PRINT Your Name:

Quiz 2 - January 20, $2012-$ Section $7-11: 15-12: 05$
Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work. Check your answer.
The quiz is worth 5 points.
Find $\int \sec ^{6} t d t$.
Answer: Save $\sec ^{2} t$. Convert the remaining $\sec ^{4} t$ to $\tan t$'s using $\tan ^{2} t+1=$ $\sec ^{2} t$. Let $u=\tan t$. It follows that $d u=\sec ^{2} t d t$. The original problem is equal to

$$
\begin{aligned}
\int\left(\tan ^{2} t+1\right)^{2} \sec ^{2} t d t & =\int\left(u^{2}+1\right)^{2} d u=\int\left(u^{4}+2 u^{2}+1\right) d u=\frac{u^{5}}{5}+\frac{2 u^{3}}{3}+u+C \\
& =\frac{\tan ^{5} t}{5}+\frac{2 \tan ^{3} t}{3}+\tan t+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
\tan ^{4} t \sec ^{2} t+2 \tan ^{2} t \sec ^{2} t+\sec ^{2} t & =\sec ^{2} t\left(\tan ^{4}+2 \tan ^{2} t+1\right)=\sec ^{2} t\left(\tan ^{2} t+1\right)^{2} \\
& =\sec ^{2} t \sec ^{4} t . \checkmark
\end{aligned}
$$

