PRINT Your Name:

Quiz 2 - January 26, 2011 - Section 4 - 9:05-9:55 recitation.
Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work. Check your answer.
The quiz is worth 5 points.
Find $\int \tan ^{3} x \sec x d x$.
Answer: This integral has $\tan x$ to an odd power. So, we save $\sec x \tan x$ and convert the remaining $\tan x$'s into $\sec x$'s. The integral is equal to

$$
\int\left(\sec ^{2} x-1\right) \sec x \tan x d x
$$

Let $u=\sec x$. It follows that $d u=\sec x \tan x d x$. The integral is

$$
\int\left(u^{2}-1\right) d u=\frac{u^{3}}{3}-u+C=\frac{\sec ^{3} x}{3}-\sec x+C .
$$

Check: The derivative of the proposed answer is

$$
\sec ^{2} x \sec x \tan x-\sec x \tan x=\sec x \tan x\left(\sec ^{2} x-1\right)=\sec x \tan x \tan ^{2} x . \checkmark
$$

