PRINT Your Name:

Quiz 2 - September 1, 2010 - Section 10 - 11:15-12:05

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work.
The quiz is worth 5 points.
Find $\int \tan ^{5} x d x$.
Answer: Save $\tan x$. Convert the remaining $\tan ^{4} x$ to $\sec x$'s using $\tan ^{2} x+1=$ $\sec ^{2} x$. Let $u=\sec x$. It follows that $d u=\sec x \tan x d x$. The original problem is equal to

$$
\begin{aligned}
& \int\left(\sec ^{2} x-1\right)^{2} \tan x d x=\int \frac{\left(u^{2}-1\right)^{2}}{u} d u=\int\left(u^{3}-2 u+\frac{1}{u}\right) d u \\
& =\frac{u^{4}}{4}-2 u^{2}+\ln |u|+C=\frac{\sec ^{4} x}{4}-\sec ^{2} x+\ln |\sec x|+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\sec ^{3} x \sec x \tan x-2 \sec x \sec x \tan x+\tan x=\tan x\left(\sec ^{4} x-2 \sec ^{2} x+1\right)= \\
\tan x\left(\sec ^{2} x-1\right)^{2}=\tan x \tan ^{4} x . \checkmark
\end{gathered}
$$

