PRINT Your Name:

Quiz 2 - August 28, 2009-8:00 section

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work.

The quiz is worth 5 points.
Compute $\int_{0}^{1} \frac{y^{2} d y}{\sqrt{4-3 y}}$.
Answer: We do a change of variables. Suppose that the expression under the radical was just a variable, then we could do algebraic tricks to finish the problem! We make it so! Let $u=4-3 y$. It follows that $d u=-3 d y$. Notice that when $x=0$, then $u=4$; and when $x=1$, then $u=1$. The original problem is equal to

$$
\begin{gathered}
\int_{4}^{1} \frac{\left(\frac{4-u}{3}\right)^{2} d u}{-3 \sqrt{u}}=\frac{1}{-27} \int_{4}^{1} \frac{(4-u)^{2} d u}{\sqrt{u}} \\
=\frac{1}{-27} \int_{4}^{1} \frac{\left(16-8 u+u^{2}\right) d u}{\sqrt{u}}=\frac{1}{-27} \int_{4}^{1}\left(16 u^{-1 / 2}-8 u^{1 / 2}+u^{3 / 2}\right) d u \\
=\frac{1}{-27}\left(16 u^{1 / 2} 2-8 u^{3 / 2} \frac{2}{3}+\left.u^{5 / 2} \frac{2}{5}\right|_{4} ^{1}\right)=\frac{32-\frac{16}{3}+\frac{2}{5}-\left(16 \cdot 4-\frac{8 \cdot 8 \cdot 2}{3}+\frac{64}{5}\right)}{-27}
\end{gathered}
$$

