PRINT Your Name:

$$
\text { Quiz } 16 \text { - October 14, } 2015
$$

Find $\int \frac{3 x^{2}-3 x+2}{x^{3}+x} d x$. Please check your answer.
We use the technique of partial fractions. The demoninator factors as $x\left(x^{2}+1\right)$. We look for A, B, and C with

$$
\frac{3 x^{2}-3 x+2}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} .
$$

Multiply both sides by $x\left(x^{2}+1\right)$ to obtain

$$
3 x^{2}-3 x+2=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A
$$

Equate the corresponding coefficients to see that

$$
3=A+B, \quad-3=C, \quad 2=A
$$

Calculate that $B=1$. We seem to have shown that

$$
\frac{3 x^{2}-3 x+2}{x^{3}+x}=\frac{2}{x}+\frac{x-3}{x^{2}+1} .
$$

We verify this claim before going any further. The right side is

$$
\frac{2 x^{2}+2+x^{2}-3 x}{x\left(x^{2}+1\right)}=\frac{3 x^{2}-3 x+2}{x^{3}+x}
$$

as claimed. Now we compute

$$
\begin{aligned}
& \int \frac{3 x^{2}-3 x+2}{x^{3}+x} d x=\int\left(\frac{2}{x}+\frac{x-3}{x^{2}+1}\right) d x \\
& =2 \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-3 \arctan x+C .
\end{aligned}
$$

