The series
\[1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \ldots \]
satisfies the hypotheses of the Alternating Series Test; and therefore this series converges. Approximate the sum of this series with an error at most .005. **Explain very thoroughly.**

Answer: Let \(S \) be the sum of the series. The Alternating Series test tells us that the distance between \(S \) and some partial sum of the series is at most the absolute value of the next term:

\[
|S - 1| \leq \frac{1}{3!}, \\
|S - (1 - \frac{1}{3!})| \leq \frac{1}{5!}, \\
|S - (1 - \frac{1}{3!} + \frac{1}{5!})| \leq \frac{1}{7!}
\]

etc.

We want to find an odd number \(n \) with

\[
\frac{1}{n!} \leq .005 = \frac{5}{1000} = \frac{1}{200}.
\]

We want \(200 \leq n! \). We know that \(5! = 120 \) and \(7! \) is much more than \(200 \). We conclude that

\[
1 - \frac{1}{3!} + \frac{1}{5!} \text{ approximates } S \text{ with an error at most } .005.
\]