PRINT Your Name: \qquad

Quiz - April 4, 2006

The series

$$
1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots
$$

satisfies the hypotheses of the Alternating Series Test; and therefore this series converges. Approximate the sum of this series with an error at most .005 . Explain very thoroughly.

Answer: Let S be the sum of the series. The Alternating Series test tells us that the distance between S and some partial sum of the series is at most the absolute value of the next term:

$$
\begin{aligned}
& |S-1| \leq \frac{1}{3!} \\
& \left|S-\left(1-\frac{1}{3!}\right)\right| \leq \frac{1}{5!} \\
& \left|S-\left(1-\frac{1}{3!}+\frac{1}{5!}\right)\right| \leq \frac{1}{7!}
\end{aligned}
$$

etc.
We want to find an odd number n with

$$
\frac{1}{n!} \leq .005=\frac{5}{1000}=\frac{1}{200}
$$

We want $200 \leq n!$. We know that $5!=120$ and 7 ! is much more than 200 . We conclude that

$$
1-\frac{1}{3!}+\frac{1}{5!} \text { approximates } S \text { with an error at most } .005 .
$$

