PRINT Your Name: \qquad

Quiz - March 30, 2006

Does the series $\sum_{k=1}^{\infty} \frac{5^{k}+k}{k!+3}$ converge? Explain very thoroughly.
Answer: Notice that

$$
\frac{5^{k}+k}{k!+3}<\frac{5^{k}+5^{k}}{k!}=\frac{2 \cdot 5^{k}}{k!}
$$

because the fraction on the right has a larger numerator and a smaller denominator. The series $\sum_{k=1}^{\infty} \frac{2 \cdot 5^{k}}{k!}$ converges by the ratio test:

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{2 \cdot 5^{k+1}}{(k+1)!}}{\frac{2 \cdot 5^{k}}{k!}}=\lim _{k \rightarrow \infty} \frac{2 \cdot 5^{k+1}}{(k+1)!} \frac{k!}{2 \cdot 5^{k}}=\lim _{k \rightarrow \infty} \frac{5}{k+1}=0<1
$$

Both series $\sum_{k=1}^{\infty} \frac{5^{k}+k}{k!+3}$ and $\sum_{k=1}^{\infty} \frac{2 \cdot 5^{k}}{k!}$ are positive series. The terms of $\sum_{k=1}^{\infty} \frac{5^{k}+k}{k!+3}$ are smaller than the terms of $\sum_{k=1}^{\infty} \frac{2 \cdot 5^{k}}{k!}$. The series $\sum_{k=1}^{\infty} \frac{2 \cdot 5^{k}}{k!}$ converges. We apply the Comparison test to conclude that the series $\sum_{k=1}^{\infty} \frac{5^{k}+k}{k!+3}$ also converges.

