PRINT Your Name: \qquad

Quiz - March 2, 2006

Consider the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, where

$$
a_{n}=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\cdots+\frac{n}{n^{2}} .
$$

What is the limit of this sequence? Explain your answer thoroughly.
Answer: Recall that if $S=1+2+3+\ldots n$, then $S=\frac{n(n+1)}{2}$. (Indeed, $2 S$ is equal to

$$
\begin{array}{llll}
1 & +2 & +3 & +\ldots+(n-1) \\
+n+(n-1) & +(n-2) & +\ldots+1 & +n .
\end{array}
$$

Each column adds to $n+1$, there are n columns. Thus, $2 S=n(n+1)$ and $S=\frac{n(n+1)}{2}$.) It follows that

$$
a_{n}=\frac{n(n+1)}{2 n^{2}}=\frac{n^{2}}{2 n^{2}}+\frac{1}{2 n}
$$

and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}+\frac{1}{2 n}=\frac{1}{2}
$$

