PRINT Your Name: \qquad

Quiz - February 23, 2006

Find $\int \frac{d x}{x^{2} \sqrt{9 x^{2}-4}}$. Check your answer.
Answer: Let $3 x=2 \sec \theta$. It follows that $3 d x=2 \sec \theta \tan \theta d \theta$,

$$
\sqrt{9 x^{2}-4}=\sqrt{4 \sec ^{2} \theta-4}=2 \tan \theta
$$

and the original integral is equal to

$$
\int \frac{(2 / 3) \sec \theta \tan \theta d \theta}{(4 / 9) \sec ^{2} \theta(2) \tan \theta}=\frac{3}{4} \int \frac{d \theta}{\sec \theta}=\frac{3}{4} \int \cos \theta d \theta=\frac{3}{4} \sin \theta+C .
$$

Consider a triangle with hypotenuse $3 x$, adjacent 2 , and opposite $\sqrt{9 x^{2}-4}$. We see that the answer is

$$
\frac{3}{4} \frac{\sqrt{9 x^{2}-4}}{3 x}+C=\frac{\sqrt{9 x^{2}-4}}{4 x}+C
$$

Check: The derivative of the proposed answer is

$$
\frac{4 x \frac{18 x}{2 \sqrt{9 x^{2}-4}}-4 \sqrt{9 x^{2}-4}}{16 x^{2}}=\frac{\frac{9 x^{2}}{\sqrt{9 x^{2}-4}}-\sqrt{9 x^{2}-4}}{4 x^{2}}=\frac{9 x^{2}-\left(9 x^{2}-4\right)}{4 x^{2} \sqrt{9 x^{2}-4}}
$$

