PRINT Your Name:

\qquad

Quiz - February 16, 2006

Find $\int \frac{d x}{\left(4+x^{2}\right)^{2}}$. Check your answer.
Answer: Let $x=2 \tan \theta$. It follows that $d x=2 \sec ^{2} \theta d \theta, 4+x^{2}=4 \sec ^{2} \theta$, and the integral is equal to

$$
\begin{gathered}
\int \frac{2 \sec ^{2} \theta d \theta}{16 \sec ^{4} \theta}=\frac{1}{8} \int \frac{d \theta}{\sec ^{2} \theta}=\frac{1}{8} \int \cos ^{2} \theta d \theta=\frac{1}{16} \int(1+\cos 2 \theta) d \theta \\
=\frac{1}{16}\left(\theta+\frac{\sin 2 \theta}{2}\right)+C=\frac{1}{16}\left(\theta+\frac{2 \sin \theta \cos \theta}{2}\right)+C
\end{gathered}
$$

Draw a triangle with the side opposite the angle θ of length x, the adjacent side is 2 , the hypothenuse is $\sqrt{x^{2}+4}$. We now see that $\sin \theta=\frac{x}{\sqrt{x^{2}+4}}$ and $\cos \theta=\frac{2}{\sqrt{x^{2}+4}}$. We know know that the integral is equal to:

$$
\frac{1}{16}\left(\arctan \frac{x}{2}+\frac{2 x}{x^{2}+4}\right)+C
$$

Check: The derivative of the proposed answer is

$$
\begin{gathered}
\frac{1}{16}\left(\frac{\frac{1}{2}}{1+\frac{x^{2}}{4}}-2 x \frac{2 x}{\left(x^{2}+4\right)^{2}}+\frac{2}{x^{2}+4}\right) \\
\frac{1}{16}\left(\frac{2}{4+x^{2}}-\frac{4 x^{2}}{\left(x^{2}+4\right)^{2}}+\frac{2}{x^{2}+4}\right) \\
\frac{1}{16}\left(\frac{4\left(x^{2}+4\right)}{\left(4+x^{2}\right)^{2}}-\frac{4 x^{2}}{\left(x^{2}+4\right)^{2}}\right) \\
\frac{1}{16}\left(\frac{4(4)}{\left(4+x^{2}\right)^{2}}\right) \cdot \checkmark
\end{gathered}
$$

