Quiz 13 November 17, $2010-$ Section $9-10: 10-11: 00$

Evaluate the indefinite integral $\int \frac{t}{1-t^{8}} d t$ as a power series. What is the radius of convergence?
Answer. The geometric series $\sum_{n=0}^{\infty}\left(t^{8}\right)^{n}$ converges to $\frac{1}{1-t^{8}}$ for $-1<t^{8}<1$. Notice that $-1<t^{8}<1$ if and only if $-1<t<1$. So

$$
\sum_{n=0}^{\infty} t^{8 n}=\frac{1}{1-t^{8}} \quad \text { for }-1<t<1
$$

Multiply by t to see that

$$
\sum_{n=0}^{\infty} t^{8 n+1}=\frac{t}{1-t^{8}} \quad \text { for }-1<t<1
$$

Integrate to see that

$$
\sum_{n=0}^{\infty} \frac{t^{8 n+2}}{8 n+2}+C=\int \frac{t}{1-t^{8}} d t \quad \text { for }-1<t<1
$$

