PRINT Your Name:

Quiz 13 - November 28, 2012 - - Section 9 - 10:10-11:00

Remove everything from your desk except a pencil or pen.

Write in complete sentences.

The quiz is worth 5 points.
Consider the power series $f(x)=\sum_{n=1}^{\infty} \frac{3^{n}(x+4)^{n}}{\sqrt{n}}$. Where does $f(x)$ converge? Justify your answer very thoroughly. Write in complete sentences. If there are "endpoints" in your answer, be sure to study the endpoints very carefully.

Answer. We know that $f(x)$ converges when $x=-4$. Henceforth we only consider x with $x \neq-4$. Apply the ratio test. Let

$$
\begin{aligned}
\rho=\lim _{n \rightarrow \infty} \frac{\frac{3^{n+1}|x+4|^{n+1}}{\sqrt{n+1}}}{\frac{3^{n}|x+4|^{n}}{\sqrt{n}}} & =\lim _{n \rightarrow \infty} \frac{3^{n+1}|x+4|^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{3^{n}|x+4|^{n}}=\lim _{n \rightarrow \infty} 3|x+4| \frac{\sqrt{n}}{\sqrt{n+1}} \\
& =\lim _{n \rightarrow \infty} 3|x+4| \frac{1}{\sqrt{1+\frac{1}{n}}}=3|x+4| .
\end{aligned}
$$

If $3|x+4|<1$ then $f(x)$ converges. If $1<3|x+4|$ diverges. We notice that $3|x+4|<1$ is equivalent to $\frac{-13}{3}<x<\frac{-11}{3}$. We also notice that $1<3|x+4|$ is equivalent to $x<\frac{-13}{3}$ or $\frac{-11}{3}<x$. Now we deal with the end points. We see that

$$
f\left(\frac{-11}{3}\right)=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-11}{3}+4\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{1}{3}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},
$$

which is the p-series with $p=\frac{1}{2}<1$. This p-series diverges; hence, $f\left(\frac{-11}{3}\right)$ diverges. We also see that

$$
f\left(\frac{-13}{3}\right)=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-13}{3}+4\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-1}{3}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}},
$$

which is an alternating series. We observe that

$$
\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>\ldots
$$

and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$. We apply the Alternating Series Test and conclude that $f\left(\frac{-13}{3}\right)$ converges. The final conclusion is that

$$
f(x) \text { converges for } \frac{-13}{3} \leq x<\frac{-11}{3} \text { and } f(x) \text { diverges everywhere else. }
$$

