PRINT Your Name:

Quiz 13 — November 28, 2012 – – Section 9 – 10:10 – 11:00

Remove everything from your desk except a pencil or pen.

Write in complete sentences.

The quiz is worth 5 points.

Consider the power series $f(x) = \sum_{n=1}^{\infty} \frac{3^n (x+4)^n}{\sqrt{n}}$. Where does f(x) converge? Justify your answer very thoroughly. Write in complete sentences. If there are "endpoints" in your answer, be sure to study the endpoints very carefully.

Answer. We know that f(x) converges when x = -4. Henceforth we only consider x with $x \neq -4$. Apply the ratio test. Let

$$\rho = \lim_{n \to \infty} \frac{\frac{3^{n+1}|x+4|^{n+1}}{\sqrt{n+1}}}{\frac{3^n|x+4|^n}{\sqrt{n}}} = \lim_{n \to \infty} \frac{3^{n+1}|x+4|^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{3^n|x+4|^n} = \lim_{n \to \infty} 3|x+4| \frac{\sqrt{n}}{\sqrt{n+1}}$$
$$= \lim_{n \to \infty} 3|x+4| \frac{1}{\sqrt{1+\frac{1}{n}}} = 3|x+4|.$$

If 3|x + 4| < 1 then f(x) converges. If 1 < 3|x + 4| diverges. We notice that 3|x + 4| < 1 is equivalent to $\frac{-13}{3} < x < \frac{-11}{3}$. We also notice that 1 < 3|x + 4| is equivalent to $x < \frac{-13}{3}$ or $\frac{-11}{3} < x$. Now we deal with the end points. We see that

$$f(\frac{-11}{3}) = \sum_{n=1}^{\infty} \frac{3^n (\frac{-11}{3} + 4)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n (\frac{1}{3})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

which is the *p*-series with $p = \frac{1}{2} < 1$. This *p*-series diverges; hence, $f(\frac{-11}{3})$ diverges. We also see that

$$f(\frac{-13}{3}) = \sum_{n=1}^{\infty} \frac{3^n (\frac{-13}{3} + 4)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n (\frac{-1}{3})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}},$$

which is an alternating series. We observe that

$$\frac{1}{\sqrt{1}} > \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{3}} > \dots$$

and $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. We apply the Alternating Series Test and conclude that $f(\frac{-13}{3})$ converges. The final conclusion is that

$$f(x)$$
 converges for $\frac{-13}{3} \le x < \frac{-11}{3}$ and $f(x)$ diverges everywhere else.