PRINT Your Name:

Quiz 13 - April 13, 2012 - Section 8 - 10:10-11:00

Remove everything from your desk except a pencil or pen.
Write in complete sentences.
The quiz is worth 5 points.
Find the sum of $\sum_{n=2}^{\infty} n(n-1) x^{n}$ for $|x|<1$.
Answer. We know that $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ for $|x|<1$. Take the derivative to get $\sum_{n=0}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}$ for $|x|<1$. Take another derivative to get: $\sum_{n=0}^{\infty} n(n-1) x^{n-2}=$ $\frac{2}{(1-x)^{3}}$ for $|x|<1$. Multiply by x^{2} to get: $\sum_{n=0}^{\infty} n(n-1) x^{n}=\frac{2 x^{2}}{(1-x)^{3}}$ for $|x|<1$. Of course, when $n=0$ or $n=1$, then $n(n-1) x^{n}$ is zero; so $\sum_{n=2}^{\infty} n(n-1) x^{n}=\frac{2 x^{2}}{(1-x)^{3}}$ for $|x|<1$.

