Remove everything from your desk except a pencil or pen.

Write in complete sentences.

The quiz is worth 5 points.

Find the sum of $\sum_{n=2}^{\infty} n(n-1)x^n$ for |x| < 1.

Answer. We know that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for |x| < 1. Take the derivative to get $\sum_{n=0}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$ for |x| < 1. Take another derivative to get: $\sum_{n=0}^{\infty} n(n-1)x^{n-2} = \frac{2}{(1-x)^3}$ for |x| < 1. Multiply by x^2 to get: $\sum_{n=0}^{\infty} n(n-1)x^n = \frac{2x^2}{(1-x)^3}$ for |x| < 1. Of course, when n=0 or n=1, then $n(n-1)x^n$ is zero; so $\sum_{n=2}^{\infty} n(n-1)x^n = \frac{2x^2}{(1-x)^3}$ for |x| < 1.