PRINT Your Name: \qquad
Quiz 13 - November 28, 2012 - Section 10 - 11:15-12:05
Remove everything from your desk except a pencil or pen.
Write in complete sentences.
The quiz is worth 5 points.
Does the series $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$ converge? Justify your answer very thoroughly. Write in complete sentences.
Answer. When n is large, $\sin \left(\frac{1}{n}\right)$ behaves much like $\frac{1}{n}$. For that reason, the given series makes us think of $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. The numbers $\frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$ and $\frac{1}{n^{3 / 2}}$ are positive. We use the Limit Comparison Test to compare the given series $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$ and the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ that we made up. (Of course, the series that we made up is the p-series with $p=\frac{3}{2}>1$. The series that we made up converges.) We compute

$$
\lim _{n \rightarrow \infty} \frac{" a_{n} "}{" b_{n} "}=\lim _{n \rightarrow \infty} \frac{\frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}} .
$$

The top and the bottom both go to zero. We use L'Hopital's rule to see that this limit is

$$
\lim _{n \rightarrow \infty} \frac{\cos \left(\frac{1}{n}\right)\left(\frac{-1}{n^{2}}\right)}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)=1
$$

The limit 1 is a number. One is not zero. One is not infinity. The Limit Comparison Test guarantees that the series $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ both converge or both diverge. We have already seen that $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. We conclude that $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$ also converges.

