PRINT Your Name:

Quiz 13 - November 25, 2013 - Section 2-4:40-5:30

Remove everything from your desk except a pencil or pen.
Write in complete sentences. Explain your work!
The quiz is worth 5 points.
Express $f(x)=\frac{3}{x^{2}-x-2}$ as a power series by first using partial fractions. Justify your answer. Write in complete sentences.
Answer: Observe that $x^{2}-x-2=(x-2)(x+1)$. Write $\frac{3}{x^{2}-x-2}=\frac{A}{x-2}+\frac{B}{x+1}$. Multiply both sides by $(x-2)(x+1)$ to get $3=A(x+1)+B(x-2)$. Plug in $x=2$ to see that $A=1$. Plug in $x=-1$ to see that $B=-1$. Check that

$$
\frac{1}{x-2}+\frac{-1}{x+1}=\frac{(x+1)-(x-2)}{(x-2)(x+1)}=\frac{3}{x^{2}-x+1}
$$

Divide top and bottom by -2 to see that

$$
\frac{1}{x-2}=\frac{\frac{-1}{2}}{1-\frac{x}{2}}=\frac{-1}{2} \sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{-1}{2^{n+1}}\right) x^{n} \quad \text { for }-1<\frac{x}{2}<1 .
$$

Observe also that

$$
\frac{-1}{x+1}=\frac{-1}{1-(-x)}=-\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n+1} x^{n} \quad \text { for }-1<-x<1
$$

We see that $-1<\frac{x}{2}<1$ is equivalent to $-2<x<2$. The x 's for which $-2<x<2$ and $-1<-x<1$ both occur are the x 's with $-1<-x<1$. We conclude that

$$
f(x)=\sum_{n=0}^{\infty}\left((-1)^{n+1}+\frac{-1}{2^{n+1}}\right) x^{n} \quad \text { for }-1<-x<1
$$

