PRINT Your Name:

Quiz 13 - November 25, 2013 - Section 1 - 3:30-4:20
Remove everything from your desk except a pencil or pen.
Write in complete sentences. Explain your work!
The quiz is worth 5 points.
For which x does the power series $f(x)=\sum_{n=1}^{\infty} \frac{(4 x+1)^{n}}{n^{2}}$ converge? Explain your work very carefully. Write in complete sentences.

Answer: We apply the ratio test. We see that

$$
\begin{aligned}
\rho=\lim _{\rho \rightarrow 0}\left|\frac{a_{n}}{a_{n-1}}\right| & =\lim _{\rho \rightarrow 0}\left|\frac{\frac{(4 x+1)^{n}}{n^{2}}}{\frac{(4 x+1)^{n-1}}{(n-1)^{2}}}\right|=\lim _{\rho \rightarrow 0} \frac{|4 x+1|^{n}}{n^{2}} \frac{(n-1)^{2}}{|4 x+1|^{n-1}} \\
& =\lim _{\rho \rightarrow 0}|4 x+1|\left(1-\frac{1}{n}\right)^{2}=|4 x+1| .
\end{aligned}
$$

If $\rho<1$, then $f(x)$ converges. If $1<\rho$, then $f(x)$ diverges. We see that $\rho<1$, when $-1<4 x+1<1$, and this happens when $-2<4 x<0$ and this happens when $\frac{-1}{2}<x<0$.

If $1<\rho$, then $f(x)$ diverges. There are two ways to have $1<\rho$; namely, if $1<4 x+1$, then $1<\rho$; also, if $4 x+1<-1$, then $1<\rho$. In other words, if $0<x$ or if $x<-\frac{1}{2}$, then $1<\rho$.

We see that $f(0)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, which is the p-series with $p=2>1$. Thus, $f(2)$ converges.

We see that $f\left(\frac{-1}{2}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$. We use the Absolute Convergence Test. The series $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{2}}\right|$ is the same as $f(0)$, which converges. Thus, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ (which is $\left.f\left(\frac{-1}{2}\right)\right)$ also converges.

We conclude that

$$
f(x) \text { converges for } \frac{-1}{2} \leq x \leq 0, \text { and diverges everywhere else. }
$$

