PRINT Your Name:
Quiz $12-$ November 14, $2012--$ Section $9-10: 10-11: 00$

Remove everything from your desk except a pencil or pen.

Write in complete sentences.

The quiz is worth 5 points.
Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 5^{n}}$ converge? If so, approximate the sum of this series with an error less than 10^{-4}. Justify your answer very thoroughly. Write in complete sentences.

Answer. We apply the alternating series test. This series is an alternating series. It is clear that

$$
\frac{1}{1 \cdot 5^{1}}>\frac{1}{2 \cdot 5^{2}}>\frac{1}{3 \cdot 5^{3}}>\frac{1}{4 \cdot 5^{4}}>\ldots
$$

It is also clear that $\lim _{n \rightarrow \infty} \frac{1}{n 5^{n}}=0$. The alternating series test guarantees that the series converges. The AST also guarantees that

$$
\left|\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 5^{n}}-\sum_{n=1}^{N} \frac{(-1)^{n}}{n 5^{n}}\right| \leq \frac{1}{(N+1) 5^{N+1}}
$$

for each positive integer N. We want to choose N large enough that

$$
\frac{1}{(N+1) 5^{N+1}} \leq 10^{-4}
$$

In other words, we want

$$
10^{4} \leq(N+1) 5^{N+1}
$$

We see that $4 \cdot 5^{4}=4 \cdot 625<10^{4}<5 \cdot 5 \cdot 625=5 \cdot 5^{5}$. So $10^{4} \leq(N+1) 5^{N+1}$ when $N=4$. We conclude that

$$
\begin{aligned}
& \text { the series } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 5^{n}} \text { converges and the sum of the series may be approximated } \\
& \text { by } \sum_{n=1}^{4} \frac{(-1)^{n}}{n 5^{n}} \text { with an error less than } 10^{-4} \text {. }
\end{aligned}
$$

