PRINT Your Name: \qquad
Quiz 12 - November 14, 2012 - Section 10 - 11:15-12:05
Remove everything from your desk except a pencil or pen.
Write in complete sentences.
The quiz is worth 5 points.
Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ converge? If so, approximate the sum of this series with an error less than 10^{-4}. Justify your answer very thoroughly. Write in complete sentences.

Answer. We apply the alternating series test. This series is an alternating series. It is clear that

$$
\frac{1}{1^{5}}>\frac{1}{2^{5}}>\frac{1}{3^{5}}>\frac{1}{4^{5}}>\ldots
$$

It is also clear that $\lim _{n \rightarrow \infty} \frac{1}{n^{5}}=0$. The alternating series test guarantees that the series converges. The AST also guarantees that

$$
\left|\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}-\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n^{5}}\right| \leq \frac{1}{(N+1)^{5}}
$$

for each positive integer N. We want to choose N large enough that

$$
\frac{1}{(N+1)^{5}} \leq 10^{-4}
$$

In other words, we want

$$
10^{4} \leq(N+1)^{5}
$$

We see that $6^{5}<40 \cdot 40 \cdot 6=9600<10^{4}<11,200=40 \cdot 40 \cdot 7<7^{5}$. So $10^{4} \leq(N+1)^{5}$ when $N=6$. We conclude that
the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ converges and the sum of the series may be approximated by $\sum_{n=1}^{6} \frac{(-1)^{n+1}}{n^{5}}$ with an error less than 10^{-4}.

