PRINT Your Name:
Quiz 11 - April 4, 2014 - Section 8 - 10:50-11:40
Remove everything from your desk except this page and a pencil or pen. The solution will be posted soon after the quiz is given.

Circle your answer.
The quiz is worth 5 points.
Approximate the sum $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{10^{n} n!}$ with an error at most 5×10^{-6}. Explain what you are doing very thoroughly. Your work must be correct and meaningful. Write in complete sentences. Write from left to right and from top to bottom.

Answer: The series is an alternating series. The absolute values of the terms form a decreasing sequence. (The numerators are constant and the denominators are growing.) The terms go to zero. The series converges by the Alternating Series Test and

$$
\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{10^{n} n!}-\sum_{n=0}^{N} \frac{(-1)^{n}}{10^{n} n!}\right| \leq \frac{1}{10^{N+1}(N+1)!}
$$

We look for N with

$$
\frac{1}{10^{N+1}(N+1)!} \leq 5 \times 10^{-6}
$$

We look for N with

$$
10^{6} \leq 5 \cdot 10^{N+1}(N+1)!.
$$

We notice that when $N=3$, then

$$
10^{6}<5 \cdot 10^{4}(24)=5 \cdot 10^{N+1}(N+1)!.
$$

We conclude that

$$
\sum_{n=0}^{3} \frac{(-1)^{n}}{10^{n} n!} \text { approximates } \sum_{n=0}^{\infty} \frac{(-1)^{n}}{10^{n} n!} \text { with an error at most } 5 \times 10^{-6}
$$

Of course, our approximation is equal to $1-\frac{1}{10}+\frac{1}{200}-\frac{1}{6000}$.

