Quiz 10 October 27, 2010 - Section 9 - 10:10 - 11:00

Does the series $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ converge? Justify your answer very thoroughly.

Answer. We compare this series to the divergent Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$, using the limit comparison test. We know that the top and the bottom of the following limit both go to 0, so we use L'hopital's rule to see that

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{-1}{n^2} \cos \frac{1}{n}}{\frac{-1}{n^2}} = \lim_{n \to \infty} \cos \frac{1}{n} = 1.$$

We know that 1 is a number, not zero, not infinity. So, $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ both converge or both diverge. We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. We conclude that $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ diverges.