PRINT Your Name:

Quiz 10 - October 31, 2012 - Section $9-10: 10-11: 00$

Remove everything from your desk except a pencil or pen.

Write in complete sentences.
The quiz is worth 5 points.
Find all values of x for which the series $\sum_{n=0}^{\infty} \frac{\cos ^{n} x}{2^{n}}$ converges. Find the sum of the series for those values of x.
Answer: The series $\sum_{n=0}^{\infty} \frac{\cos ^{n} x}{2^{n}}$ is a geometric series with initial term $a=\frac{\cos ^{0} x}{2^{0}}=1$ and ratio $r=\frac{\cos x}{2}$. We notice that $-1 \leq \cos x \leq 1$; hence, $\frac{-1}{2} \leq \frac{\cos x}{2} \leq \frac{1}{2}$ and $-1<r<1$. Thus the series $\sum_{n=0}^{\infty} \frac{\cos ^{n} x}{2^{n}}$ converges for all values of x and the sum of the series is $\frac{a}{1-r}=\frac{1}{1-\frac{\cos x}{2}}=\frac{2}{2-\cos x}$.

$$
\text { The series } \sum_{n=0}^{\infty} \frac{\cos ^{n} x}{2^{n}} \text { converges to } \frac{2}{2-\cos x} \text { for all } x \text {. }
$$

