PRINT Your Name:

Quiz 10 - March 23, 2012 - Section 8 - 10:10-11:00

Remove everything from your desk except a pencil or pen.

Write in complete sentences.
The quiz is worth 5 points.
Does the series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$ converge? Explain your work very thoroughly. Write in complete sentences.

Answer: Compare the given series to the convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, where $p=$ $2>1$. We see that every term in both series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is positive. We also see that

$$
\frac{\cos ^{2} n}{n^{2}+1} \leq \frac{1}{n^{2}+1}
$$

because $\cos ^{2} n \leq 1$ and

$$
\frac{1}{n^{2}+1} \leq \frac{1}{n^{2}}
$$

because the denominator is larger on the left. Thus,

$$
\frac{\cos ^{2} n}{n^{2}+1} \leq \frac{1}{n^{2}}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges; thus $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$ also converges by the first part of the comparison test.

