Quiz 10 - October 27, 2010 - Section 10 - 11:15-12:05
Does the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{n!}$ converge? Justify your answer very thoroughly.
Answer. Let a_{n} be the $\mathrm{n}^{\text {th }}$ individual term of this series. That is $a_{n}=(-1)^{n} \frac{n^{n}}{n!}$. We see that $\left|a_{n}\right|=\frac{n^{n}}{n!}=\frac{n}{n} \frac{n}{n-1} \frac{n}{n-2} \cdots \frac{n}{2} \frac{n}{1} \geq 1$. Thus, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The Individual Term Test for Divergence tells us that $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{n!}$ diverges.

