PRINT Your Name:

Quiz 10 - October 31, 2012 - Section 10 - 11:15-12:05
Remove everything from your desk except a pencil or pen.
Circle your answer. Show your work. Your work should be correct and coherent.
The quiz is worth 5 points.
Does the series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$ converge? Justify your answer. Write in complete sentences.

Answer: Yes, the series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$ does converge. We compare $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$ to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. Both series are series of non-negative numbers. We know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is the p-series with $p=2>1$; hence the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Furthermore, $\frac{\cos ^{2} n}{n^{2}+1}<\frac{1}{n^{2}}$ because $\cos ^{2} n \leq 1$ and $n^{2} \leq n^{2}+1$ so

$$
\frac{\cos ^{2} n}{n^{2}+1} \leq \frac{1}{n^{2}+1}<\frac{1}{n^{2}}
$$

Our conclusion follows from the comparison test.

