PRINT Your Name:

Quiz 10 - March 28, 2014 - Section 8 - 10:50-11:40
Remove everything from your desk except this page and a pencil or pen. The solution will be posted soon after the quiz is given.

Does the series $\sum_{n=1}^{\infty} \tan \frac{1}{n}$ converge? Justify your answer very thoroughly.
Answer. We compare this series to the divergent Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$, using the limit comparison test. We know that the top and the bottom of the following limit both go to 0 , so we use L'hopital's rule to see that

$$
\lim _{n \rightarrow \infty} \frac{\tan \frac{1}{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{-1}{n^{2}} \sec ^{2} \frac{1}{n}}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} \sec ^{2} \frac{1}{n}=1
$$

We know that 1 is a number, not zero, not infinity. So, $\sum_{n=1}^{\infty} \tan \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ both converge or both diverge. We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. We conclude that $\sum_{n=1}^{\infty} \tan \frac{1}{n}$ diverges.

