PRINT Your Name:
Quiz 10 - November 4, 2013 - Section 2-4:40-5:30

Remove everything from your desk except a pencil or pen.

Write in complete sentences. Explain your work!
The quiz is worth 5 points.
Does the series $\sum_{n+1}^{\infty} \frac{2+(-1)^{n}}{n \sqrt{n}}$ converge? Justify your answer very thoroughly. Write in complete sentences.

Answer: We observe that $\frac{1}{n^{3 / 2}} \leq \frac{2+(-1)^{n}}{n \sqrt{n}} \leq \frac{3}{n^{3 / 2}}$. The inequality on the left ensures that $\sum_{n+1}^{\infty} \frac{2+(-1)^{n}}{n \sqrt{n}}$ is a series of positive numbers and we are able to use the Comparison Test. We use the inequality on the right for our comparison. The series $\sum_{n+1}^{\infty} \frac{3}{n^{3 / 2}}$ is 3 times the p-series with $p=3 / 2>1$; thus the p-series $\sum_{n+1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. Any constant times a convergent series is also convergent; hence $\sum_{n+1}^{\infty} \frac{3}{n^{3 / 2}}$ also converges. The Comparison Test now guarantees that the series $\sum_{n+1}^{\infty} \frac{2+(-1)^{n}}{n \sqrt{n}}$ also converges.

