Quizzes 10 and 11 - April 6, 2011 - Section 4 -9:05-9:55 recitation.

Each question is worth 5 points.

1. Does the series $\sum_{n=2}^{\infty} \frac{1+4^{n}}{1+3^{n}}$ converge? Justify your answer very thoroughly. Use complete sentences.
2. Does the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ converge? Justify your answer very thoroughly. Use complete sentences.
Answer. 1. We compare $\sum_{n=2}^{\infty} \frac{1+4^{n}}{1+3^{n}}$ to $\sum_{n=2}^{\infty}\left(\frac{4}{3}\right)^{n}$. The series $\sum_{n=2}^{\infty}\left(\frac{4}{3}\right)^{n}$ is the geometric series with ratio $r=\frac{4}{3}>1$; thus, $\sum_{n=2}^{\infty}\left(\frac{4}{3}\right)^{n}$ diverges. We use the Limit Comparison Test. We see that

$$
\lim _{n \rightarrow \infty} \frac{\frac{1+4^{n}}{1+3^{n}}}{\left(\frac{4}{3}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{1+4^{n}}{1+3^{n}}\left(\frac{3}{4}\right)^{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{3^{n}}+\frac{4^{n}}{3^{n}}}{\frac{1}{3^{n}}+1}\left(\frac{3}{4}\right)^{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{4^{n}}+1}{\frac{1}{3^{n}}+1}=1 .
$$

The limit 1 is a number. This number is not zero or infinity; so the Limit Comparison Test guarantees that $\sum_{n=2}^{\infty} \frac{1+4^{n}}{1+3^{n}}$ and $\sum_{n=2}^{\infty}\left(\frac{4}{3}\right)^{n}$ both converge or both diverge. We have seen that $\sum_{n=2}^{\infty}\left(\frac{4}{3}\right)^{n}$ diverges. We conclude that $\sum_{n=2}^{\infty} \frac{1+4^{n}}{1+3^{n}}$ also diverges.
2. We apply the integral test. We see that $f(x)=\frac{1}{x \sqrt{\ln x}}$ is a positive decreasing function. The integral test guarantees that the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ and the integral $\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} d x$ both converge or both diverge. We compute the integral. Let $u=\ln x$. It follows that $d u=\frac{1}{x} d x$. When $x=2$, we have $u=\ln 2$. When x goes to infinity, then u also goes to infinity. We have

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} d x=\int_{\ln 2}^{\infty} u^{-1 / 2} d u=\left.\lim _{b \rightarrow \infty} 2 \sqrt{u}\right|_{\ln 2} ^{b}=\lim _{b \rightarrow \infty}(2 \sqrt{b}-2 \sqrt{\ln 2})=\infty
$$

The integral diverges. Thus, the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ also diverges.

