
Quizzes 10 and 11 — April 6, 2011 – Section 4 – 9:05-9:55 recitation.

Each question is worth 5 points.

1. Does the series
∞
∑

n=2

1+4
n

1+3n
converge? Justify your answer very thoroughly.

Use complete sentences.

2. Does the series
∞
∑

n=2

1

n
√
lnn

converge? Justify your answer very thoroughly.

Use complete sentences.

Answer. 1. We compare
∞
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is the geo-

metric series with ratio r = 4

3
> 1; thus,
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diverges. We use the Limit

Comparison Test. We see that
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= 1.

The limit 1 is a number. This number is not zero or infinity; so the Limit Com-

parison Test guarantees that
∞
∑

n=2

1+4
n

1+3n
and

∞
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(
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both converge or both diverge.

We have seen that
∞
∑

n=2

(
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)n
diverges. We conclude that

∞
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n
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also diverges.

2. We apply the integral test. We see that f(x) = 1

x
√
lnx

is a positive decreasing

function. The integral test guarantees that the series
∞
∑

n=2
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n
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and the integral
∫∞
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dx both converge or both diverge. We compute the integral. Let u = lnx.

It follows that du = 1

x
dx. When x = 2, we have u = ln 2. When x goes to infinity,

then u also goes to infinity. We have
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dx =
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= lim
b→∞
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√
ln 2) = ∞.

The integral diverges. Thus, the series
∞
∑

n=2

1

n
√
lnn

also diverges.
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