Quizzes 10 and 11 - April 6, 2011 - Section 3 - 8:00-8:50 recitation.
Each question is worth 5 points.

1. Does the series $\sum_{n=2}^{\infty} \frac{\sqrt{n+2}}{2 n^{2}+n+1}$ converge? Justify your answer very thoroughly. Use complete sentences.
2. Does the series $\sum_{k=2}^{\infty} k^{2} e^{-k}$ converge? Justify your answer very thoroughly. Use complete sentences.
Answer. 1. Compare $\sum_{n=2}^{\infty} \frac{\sqrt{n+2}}{2 n^{2}+n+1}$ to $\sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}}$. The series $\sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}}$ is the p-series with $n=3 / 2>1$. This series converges. We use the Limit Comparison. We observe that

$$
\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n+2}}{2 n^{2}+n+1}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{(\sqrt{n+2}) n^{3 / 2}}{2 n^{2}+n+1}=\lim _{n \rightarrow \infty} \frac{\sqrt{1+\frac{2}{n}}}{2+\frac{1}{n}+\frac{1}{n^{2}}}=\frac{1}{2}
$$

We see that $1 / 2$ is a number; not 0 and not ∞. The Limit comparison test guarantees that $\sum_{n=2}^{\infty} \frac{\sqrt{n+2}}{2 n^{2}+n+1}$ and $\sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}}$ both converge or both diverge. We have seen that $\sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}}$ converges. We conclude that $\sum_{n=2}^{\infty} \frac{\sqrt{n+2}}{2 n^{2}+n+1}$ also converges.
2. Use the ratio test. We compute

$$
\rho=\lim _{k \rightarrow \infty} \frac{(k+1)^{2} e^{-(k+1)}}{k^{2} e^{-k}}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{2} e^{-(k+1)} e^{k}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{2} e^{-1}=\frac{1}{e} .
$$

Thus, $\rho<1$. The ratio test guarantees that $\sum_{k=2}^{\infty} k^{2} e^{-k}$ converges.

