PRINT Your Name:

Quiz 10 - October 30, 2009-9:05 section

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work. Check your answer!
The quiz is worth 5 points.
Compute

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots
$$

Answer: The sum is equal to

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots \frac{1}{(2 n-1) \cdot(2 n+1)}\right]
$$

We do the technique of partial fractions to examine

$$
\frac{1}{a \cdot(a+2)}=\frac{A}{a}+\frac{B}{a+2} .
$$

Multiply both sides by $a \cdot(a+2)$ to get

$$
1=A(a+2)+B a .
$$

Set $a=-2$ to see $-1 / 2=B$. Set $a=0$ to see that $1 / 2=A$. Do check that:

$$
\frac{1}{2}\left(\frac{1}{a}-\frac{1}{a+2}\right)=\frac{1}{2} \frac{a+2-a}{a(a+2)}=\frac{1}{a(a+2)} .
$$

So the original sum is

$$
\lim _{n \rightarrow \infty} \frac{1}{2}\left[\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)\right] .
$$

Remove the interior parenthenses. Every term (except the first and last terms) cancels with the term next to it. The original sum is

$$
=\lim _{n \rightarrow \infty} 1 / 2\left[\frac{1}{1}-\frac{1}{2 n+1}\right]=1 / 2 .
$$

