Quiz for August 21, 2009 - 8:00 section

Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work.
The quiz is worth 5 points.
Compute $\int_{0}^{1} \frac{x d x}{\sqrt{4-3 x^{4}}}$.
Answer: We plan to maneuver the given integral into the form

$$
\int \frac{d u}{\sqrt{1-u^{2}}}=\arcsin u+C .
$$

We have

$$
\int_{0}^{1} \frac{x d x}{\sqrt{4-3 x^{4}}}=\int_{0}^{1} \frac{x d x}{\sqrt{4\left(1-\frac{3 x^{4}}{4}\right)}}=\int_{0}^{1} \frac{x d x}{2 \sqrt{1-\frac{3 x^{4}}{4}}}
$$

Now we are ready to substitute. Let $u=\frac{\sqrt{3} x^{2}}{2}$. It follows that $d u=\sqrt{3} x d x$. Notice that when $x=0$, then $u=0$; and when $x=1$, then $u=\frac{\sqrt{3}}{2}$. The original problem is equal to

$$
\begin{aligned}
\int_{0}^{\frac{\sqrt{3}}{2}} \frac{d u}{2 \sqrt{3} \sqrt{1-u^{2}}}= & \left.\frac{1}{2 \sqrt{3}} \arcsin u\right|_{0} ^{\frac{\sqrt{3}}{2}}=\frac{1}{2 \sqrt{3}}\left(\arcsin \frac{\sqrt{3}}{2}-\arcsin 0\right) \\
& =\frac{1}{2 \sqrt{3}}\left(\frac{\pi}{3}-0\right)=\frac{\pi}{6 \sqrt{3}}
\end{aligned}
$$

