16. Does $\sum_{n=2}^{\infty} \frac{2^{n}+3^{n}}{4^{n}}$ converge? (Explain your answer.)

$$
\begin{aligned}
& \frac{2^{n}+3^{n}}{4^{n}}<\frac{3^{n}+3^{n}}{4^{n}}=2 \frac{3^{n}}{4^{n}} \\
& \sum 2 \frac{3^{n}}{4^{n}}=2 \sum\left(\frac{3}{4}\right)^{n} \text { converses because it } \\
& \text { is a geometric sevios writ ratio } \frac{3}{4}<1
\end{aligned}
$$ so the compaissan test shous that

$$
\sum \frac{2^{n}+3^{n}}{4^{n}} \text { also concertos. }
$$

17. Newton's law of cooling states that the rate at which an object cools is proportional to the difference in temperature between the object and the surrounding medium. Thus, if an object is taken from an oven at $350^{\circ} \mathrm{F}$ and left to cool in a room at $70^{\circ} \mathrm{F}$, then its temperature T after t hours will
 satisfy the differential equation

$$
\frac{d T}{d t}=k(T-70)
$$

If the temperature fell to $250^{\circ} \mathrm{F}$ after one hour, what will it be after 3 hours? (You may leave "ln" in your answer.)

$$
\begin{aligned}
& \frac{d T}{T-70}=k d t \\
& \ln |T-70|=k t+c \\
& T-70= \pm e^{c} e^{h t} \\
& T(0)=350 \\
& 350-70= \pm e^{c} e^{h 0} \\
& 280= \pm e^{1} \\
& T-70=280 e^{h t} \\
& T(1)=250 \\
& 250-70=280 e^{h}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{18 \phi}{28 \phi}=e^{k} \\
& \ln \frac{18}{28}=k
\end{aligned}
$$

$$
T(t)-70=280 e^{\operatorname{en}_{h}\left(\frac{18}{28}\right) t}
$$

$$
T(3)=70+280 e^{3 \operatorname{hn}\left(\frac{18}{28}\right)}
$$

