7. Approximate sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$ with an error of at most $\frac{1}{100}$. sure to explain what you are doing.)
The Alternating Series Test applies because this is an altethayiey series and the numbers $\frac{1}{1}>\frac{1}{2^{4}}>\frac{1}{3^{4}}>\cdots$ decticese to $O$. Sa the se condecess and $\quad\left(\left.\begin{array}{l}\text { The toter } \\ \text { sen }\end{array}-\sum_{n=0}^{N} \frac{(-1)^{n+1}}{n^{4}} \right\rvert\,<\frac{1}{(N+1)^{4}}\right.$

So $\quad\left|\begin{array}{c}\text { The total } \\ \text { Sur }\end{array}-\left(\frac{1}{1}-\frac{1}{2^{4}}+\frac{1}{3^{4}}\right)\right|<\frac{1}{4^{4}}<\frac{1}{100}$
So the saner the series is within $\frac{1}{100} 07$

$$
1-\frac{1}{24}+\frac{1}{34}
$$

8. A ball is dropped from the height of 10 feet. Each time it hits the floor it rebounds to $\frac{2}{3}$ its previous height. Find the total distance it travels.

$$
\begin{aligned}
& 10 \prod_{\frac{2}{3}(10)} \downarrow \frac{2}{3}(10) \uparrow\left(\frac{2}{3}\right)^{2} 10 \downarrow\left(\frac{2}{3}\right)^{2} 10 \uparrow\left[\frac{\sum_{3}^{3}}{}\right)^{30} L\left(\frac{2}{3}\right)^{3 / 10} \\
& \text { distance }=10+\frac{2}{3}(20)+\left(\frac{2}{3}\right)^{2}(20)+\left(\frac{2}{3}\right)^{3} 20+\cdots \\
& =10+\frac{\frac{2}{3}(20)}{1-\frac{2}{3}} 8 t \\
& \text { geotivic } \quad a=\frac{2}{3}(20) \\
& \text { series } \\
& r=\frac{2}{3} \\
& \text { city }
\end{aligned}
$$

