8. Use Trapezoidal rule with $n=4$ to approximate $\int_{1}^{2} \frac{1}{x} d x$. (You may leave your answer as a sum of fractions; it is not necessary to express it as a decimal.)
$\int_{1}^{2} \frac{1}{x} d x=\frac{1}{4 \cdot 2}\left[\frac{1}{1}+\frac{2}{\frac{5}{4}}+\frac{2}{\frac{6}{4}}+\frac{2}{\frac{7}{4}}+\frac{1}{2}\right]$

9. Let $f(x)=x-\ln x$. Where is $f(x)$. increasing, decreasing, concave up, and concave down. Find the local maxima, local minima, and points of inflection of $y=f(x)$. Graph $y=f(x)$.
$f^{\prime}(x)=1-\frac{1}{x}=\frac{x-1}{x}$
$f^{\prime \prime}(x)=\frac{1}{x^{2}}$
$\frac{1 f^{\prime \prime n}, 1^{f^{\prime} f o s}}{1}$
$f^{\prime \prime}$ alvisspos
f is in alcasit bor
$1 \leq x$
f is dec bor $0<x \leq 1$
$(1,1)$ is the floc. Win
local max

$$
\text { access c. } 4 .
$$

hover cod.
Porisfl
udumesuis $0<x$

