Math 142, Exam 3, Fall 1998, Problems 4, 5, 6, and 7

4. Find $\int \frac{5 x^{2}-2 x+2}{x^{3}+x} d x$.

Write

$$
\frac{5 x^{2}-2 x+2}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} .
$$

Multiply both sides by $x^{3}+x$ to get

$$
\begin{aligned}
& 5 x^{2}-2 x+2=A\left(x^{2}+1\right)+(B x+C) x \\
& 5 x^{2}-2 x+2=(A+B) x^{2}+C x+A
\end{aligned}
$$

Equate the corresponding coefficients:

$$
\begin{aligned}
5 & =A+B \\
-2 & =C \\
2 & =A .
\end{aligned}
$$

We see that $B=3$ and

$$
\int \frac{5 x^{2}-2 x+2}{x^{3}+x} d x=\int \frac{2}{x}+\frac{3 x-2}{x^{2}+1} d x=2 \ln |x|+\frac{3}{2} \ln \left(x^{2}+1\right)-2 \arctan x+C .
$$

5. Find $\int \sin ^{2} x \cos ^{3} x d x$.

Let $u=\sin x$. In this case $d u=\cos x d x$ and

$$
\begin{aligned}
& \int \sin ^{2} x \cos ^{3} x d x=\int \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x=\int\left(u^{2}-u^{4}\right) d u \\
& =\frac{u^{3}}{3}-\frac{u^{5}}{5}+C=\frac{\sin ^{3} x}{3}-\frac{\sin ^{5} x}{5}+C
\end{aligned}
$$

6. (10 points for each part)
(a) Find the Taylor polynomial of degree three, $P_{3}(x)$, for $f(x)=e^{-x}$ about $a=0$.
(b) Find an upper bound for the difference between $f(x)$ and $P_{3}(x)$ when $|x| \leq \frac{1}{10}$.
We see that

$$
\begin{array}{ll}
f(x)=e^{-x} & f(0)=1 \\
f^{\prime}(x)=-e^{-x} & f^{\prime}(0)=-1 \\
f^{\prime \prime}(x)=e^{-x} & f^{\prime \prime}(0)=1 \\
f^{\prime \prime \prime}(x)=-e^{-x} & f^{\prime \prime \prime}(0)=-1
\end{array}
$$

So,

$$
P_{3}(x)=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}
$$

We know that $f^{(4)}(x)=e^{-x}$. Therefore, the difference

$$
\left|f(x)-P_{3}(x)\right|=\left|R_{3}(X)\right|=\left|\frac{f^{(4)}(c) x^{4}}{4!}\right|=\frac{|x|^{4}}{4!e^{c}}
$$

for some c between x and 0 . We know that $-\frac{1}{10} \leq c \leq \frac{1}{10}$. It follows that

$$
e^{-\frac{1}{10}} \leq e^{c} \leq e^{\frac{1}{10}}
$$

and

$$
\frac{1}{e^{\frac{1}{10}}} \leq \frac{1}{e^{c}} \leq \frac{1}{e^{-\frac{1}{10}}}=e^{\frac{1}{10}}
$$

Thus,

$$
\left|f(x)-P_{3}(x)\right|=\frac{|x|^{4}}{4!e^{c}} \leq \frac{\left(\frac{1}{10}\right)^{4} e^{\frac{1}{10}}}{4!}=\frac{e^{\frac{1}{10}}}{4!\cdot 10^{4}}
$$

We conclude that

$$
\left|f(x)-P_{3}(x)\right| \leq \frac{e^{\frac{1}{10}}}{4!\cdot 10^{4}}
$$

7. Find $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x}{x}$.

It is clear that

$$
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x}{x}=\frac{\frac{\sqrt{2}}{2}}{\frac{\pi}{4}} .
$$

