$$
\text { Fall } 1998 \text { Math } 142 \text { Exan2 }
$$

PRINT Your Name: \qquad Recitation Time
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

1. Find $\int e^{x} \sin 4 x d x$.

$$
y=e^{x} \quad V=-\frac{\cos 4 x}{4}
$$

$$
S u d v=u v-S v d u
$$

The integial is essen to $-\frac{1}{4} e^{x} \cos 4 x+\frac{1}{4} \int e^{x} \cos 4 x d x$

$$
\uparrow \begin{gathered}
-\frac{1}{4} e^{x} \cos 4 x+\frac{1}{4}\left(\frac{1}{4} e^{x} \sin 4 x\right. \\
-\frac{1}{4} \int \epsilon-1 \sin 4 x
\end{gathered}
$$

$$
V=\frac{1}{4} \sin 4 x
$$

$$
d 4=e^{x} d x d V=\cos 4 x d x
$$

Thus $\int e^{x} \sin 4 x d x \quad \frac{1}{4} e^{x} \cos 4 x+\frac{1}{16} e^{x} \sin 4 x \quad \frac{1}{16} \int e^{x} \sin 4 x d x$

$$
\begin{aligned}
& \therefore \frac{17}{16} \int e^{x} \sin 4 x d x=-\frac{1}{4} e^{x} \cos 4 x+\frac{1}{16} e^{x} \sin 4 x \\
& \therefore e^{x} \sin 4 x+x=\frac{16}{17}\left(-\frac{1}{4} e^{x} \cos 4 x+\frac{1}{16} e^{x} \sin 4 x\right)+C
\end{aligned}
$$

2. Find $\int \frac{x}{\sqrt{16-9 x^{2}}} d x \frac{}{\uparrow}-\frac{1}{18} \int u^{-\frac{1}{2}} d u=-\frac{1}{9 x} u^{\frac{1}{2}} x+c=-\frac{1}{9} \sqrt{16-9 x^{2}}+c$

$$
\begin{aligned}
u & =16-9 x^{2} \\
d u & =-18 x d x
\end{aligned}
$$

