Exam 1, Math 142, Fall 1998, Problems 3, 4, 9, and 10

3. Find the area of the region bounded by $y=e^{x}$, and the line through $(0,1)$ and $(1, e)$.
The equation of the line is $y-1=(e-1) x$, or $y=(e-1) x+1$. For our region, the line has a larger y-coordinate than the exponential curve. So, the area is

$$
\begin{aligned}
& \int_{0}^{1}(e-1) x+1-e^{x} d x=(e-1) \frac{x^{2}}{2}+x-\left.e^{x}\right|_{0} ^{1}=\frac{e-1}{2}+1-e-\left(-e^{0}\right) \\
& =\frac{e}{2}-\frac{1}{2}+1-e+1=\frac{3}{2}-\frac{e}{2} .
\end{aligned}
$$

4. Simplify $\cos \left[\cos ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right]$.

We have

$$
\begin{aligned}
& \cos \left[\cos ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right] \\
& =\cos \left(\cos ^{-1}\left(\frac{4}{5}\right)\right) \cos \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)-\sin \left(\cos ^{-1}\left(\frac{4}{5}\right)\right) \sin \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)
\end{aligned}
$$

Think about the right triangle whose sides are $3-4-5$ to see that $\sin \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=\frac{3}{5}$. Think about the right triangle whose sides are $5-12-13$ to see that $\cos \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)=\frac{5}{13}$. Thus,

$$
\begin{aligned}
& \cos \left[\cos ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right] \\
& =\left(\frac{4}{5}\right) \frac{5}{13}-\frac{3}{5} \frac{12}{13}=\frac{20-36}{65}=\frac{-16}{65} .
\end{aligned}
$$

9. Find $\int \frac{1}{x \ln x} d x$.

Let $u=\ln x$. It follows that $d u=\frac{1}{x} d x$. Thus,

$$
\int \frac{1}{x \ln x} d x=\int \frac{d u}{u}=\ln |u|+c=\ln |\ln x|+C .
$$

10. Find $\int\left(\frac{1}{e^{2 x}}+\frac{1}{2 x-1}\right) d x$.

We see that

$$
\int\left(\frac{1}{e^{2 x}}+\frac{1}{2 x-1}\right) d x=\int\left(e^{-2 x}+\frac{1}{2 x-1}\right) d x=\frac{e^{-2 x}}{-2}+\frac{1}{2} \ln |2 x-1|+C
$$

