Math 142, Exam 3, Fall 2009

Use my paper. Please turn the problems in order. Please leave 1 square inch in the upper left hand corner for the staple.
The exam is worth 50 points. There are 9 problems. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Find the limit of the sequence whose $n^{\text {th }}$ term is

$$
a_{n}=n \sin \left(\frac{3}{n}\right)
$$

We see that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n \sin \left(\frac{3}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{3}{n}\right)}{\frac{1}{n}}
$$

L'hopitals's rule applies since the top and the bottom both go to zero; so,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{-3}{n^{2}} \cos \left(\frac{3}{n}\right)}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} 3 \cos \left(\frac{3}{n}\right)=3
$$

The sequence $\left\{a_{n}\right\}$ converges to 3 .
2. Does the series $\sum_{n=1}^{\infty}\left(1-\frac{2}{n}\right)^{n}$ converge? Justify your answer.

The limit of the individual terms $\left(1-\frac{2}{n}\right)^{n}$ is equal to

$$
\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}=e^{-2} \neq 0
$$

The Individual Term Test for Divergence tells me that

$$
\text { the series } \sum_{n=1}^{\infty}\left(1-\frac{2}{n}\right)^{n} \text { diverges. }
$$

3. Consider the following sequence of numbers: $a_{2}=\left(1-\frac{1}{4}\right), a_{3}=$ $\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right), a_{4}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right), \ldots, a_{n}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)(1-$ $\left.\frac{1}{16}\right) \ldots\left(1-\frac{1}{n^{2}}\right), \ldots$. Does this infinite sequence converge? Justify your answer.

This is a sequence of positive numbers. Observe that $a_{n+1}=a_{n}\left(1-\frac{1}{(n+1)^{2}}\right)$. The number $1-\frac{1}{(n+1)^{2}}$ is less than 1 ; so $a_{n+1}<a_{n}$. We are studying a decreasing bounded sequence of real numbers. The completeness axiom assures us that

$$
\text { the sequence }\left\{a_{n}\right\} \text { converges. }
$$

4. Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converge? Justify your answer.

We use the Alternating Series Test. Notice that the series alternates; $\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n+1}}$ for all n; and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$. The Alternating Series Test tells us that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \text { converges. }
$$

5. Does the series $\sum_{n=1}^{\infty} \frac{2 \sqrt{n}}{n^{2}+1}$ converge? Justify your answer.

I do a limit comparison with the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ has $p=3 / 2>1$; so $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. Observe that

$$
\lim _{n \rightarrow \infty} \frac{\frac{2 \sqrt{n}}{n^{2}+1}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}+1}=2
$$

Two is a number. It is not zero or infinity; so the limit comparison test tells us that $\sum_{n=1}^{\infty} \frac{2 \sqrt{n}}{n^{2}+1}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ both converge or both diverge. We have already seen that $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. We conclude that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{2 \sqrt{n}}{n^{2}+1} \text { converges. }
$$

6. Where does $f(x)=\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$ converge? Justify your answer. Apply the ratio test. Let

$$
\begin{aligned}
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-2)^{n+1}}{\left(n+13^{n+1}\right.}}{\frac{(x-2)^{n}}{n 3^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1} n 3^{n}}{(x-2)^{n}(n+1) 3^{n+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x-2|}{3} \frac{n}{(n+1)}=\frac{|x-2|}{3}
\end{aligned}
$$

Notice that $\rho<1$ when $\frac{|x-2|}{3}<1$; which is the same as $|x-2|<3$; which is the same as $-3<x-2<3$ or $-1<x<5$. If $-1<x<5$, then $f(x)$ converges. If $x<-1$ or $5<x$, then $f(x)$ diverges. At -1 ,

$$
f(-1)=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

Thus, $f(-1)$ is minus the sum of the Alternating Harmonic series, which we know converges. At 5 ,

$$
f(5)=\sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n} ;
$$

which is the harmonic series which diverges. We conclude that
the function $f(x)$ converges for $-1 \leq x<5$ and diverges everywhere else.
7. Approximate $e^{\frac{-1}{10}}$ with an error at most 10^{-3}. Explain what you are doing.
We apply Taylor's Theorem which says that

$$
\left|e^{x}-P_{n}(x)\right|=\left|R_{n}(x)\right|=\frac{e^{c} x^{n+1}}{(n+1)!}
$$

for some c between 0 and x. In particular, when $x=-.1$, we have $-.1 \leq c \leq 0$; hence, $e^{-.1} \leq e^{c} \leq e^{0}=1$ (since $y=e^{x}$ is an increasing function). So, $\left|R_{n}(-1 / 10)\right| \leq \frac{1}{10^{n+1}(n+1)!}$. We want $\left|R_{n}(-1 / 10)\right| \leq 10^{-3}$. In other words,
we want $10^{3} \leq 10^{n+1}(n+1)$!. This inequality holds for $n=2$. We calculate $P_{2}(x)=1+x+x^{2} / 2$. We conclude that

$$
\begin{gathered}
1-\frac{1}{10}+\frac{1}{2 \times 10^{2}} \text { approximates } e^{\frac{-1}{10}} \text { with an error of } \\
\text { at most } 10^{-3} .
\end{gathered}
$$

8. Approximate $\sum_{n=10}^{\infty} \frac{1}{n^{2}}$. Your approximation should be "close to" but more than the actual value. Explain what you are doing.
I will use an improper integral to approximate $\sum_{n=10}^{\infty} \frac{1}{n^{2}}$. Draw the graph of $y=\frac{1}{x^{2}}$. Approximate the area under the curve starting at $x=9$ by drawing rectangles with base from one integer to the next and height given by the y-coordinate on the curve above the right hand endpoint. I put a picture on a separate piece of paper. The area inside the boxes underestimates the area under the curve. The area inside the boxes is $\sum_{n=10}^{\infty} \frac{1}{n^{2}}$. The area under the curve is $\int_{9}^{\infty} x^{-2} d x$. Thus,

$$
\begin{gathered}
\sum_{n=10}^{\infty} \frac{1}{n^{2}} \leq \int_{9}^{\infty} x^{-2} d x=\left.\lim _{b \rightarrow \infty} \frac{-1}{x}\right|_{9} ^{b} \\
=\lim _{b \rightarrow \infty} \frac{-1}{b}+\frac{1}{9}=\frac{1}{9}
\end{gathered}
$$

We conclude that

$$
\sum_{n=10}^{\infty} \frac{1}{n^{2}} \leq \frac{1}{9}
$$

9. A ball is dropped from a height of 100 feet. Each time it bounces, it rebounds to $\frac{4}{5}$ its previous height. Find the total distance it travels before coming to rest.
The ball goes down 100 feet, up $\left(\frac{4}{5}\right) 100$ feet, down $\left(\frac{4}{5}\right) 100$ feet, up $\left(\frac{4}{5}\right)^{2} 100$ feet, down $\left(\frac{4}{5}\right)^{2} 100$ feet, etc. In total the ball travels

$$
\begin{gathered}
100+\left(\frac{4}{5}\right) 100+\left(\frac{4}{5}\right) 100+\left(\frac{4}{5}\right)^{2} 100+\left(\frac{4}{5}\right)^{2} 100 \\
+\left(\frac{4}{5}\right)^{3} 100+\left(\frac{4}{5}\right)^{3} 100+\ldots
\end{gathered}
$$

$$
=100+\left[\left(\frac{4}{5}\right) 200+\left(\frac{4}{5}\right)^{2} 200+\left(\frac{4}{5}\right)^{3} 200+\ldots\right]
$$

feet. The expression inside the brackets is the geometric series with $r=\frac{4}{5}$ and $a=\left(\frac{4}{5}\right) 200$. This geometric series converges to $\frac{a}{1-r}=\frac{\left(\frac{4}{5}\right) 200}{\frac{1}{5}}=800$. The ball travels $100+800=900$ feet.

