Math 142, Exam 3, Fall 2009

Use my paper. Please turn the problems in order. Please leave 1 square inch in the upper left hand corner for the staple.

The exam is worth 50 points. There are 9 problems. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

1. Find the limit of the sequence whose n^{th} term is

$$a_n = n \sin\left(\frac{3}{n}\right)$$
.

We see that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n \sin\left(\frac{3}{n}\right) = \lim_{n \to \infty} \frac{\sin\left(\frac{3}{n}\right)}{\frac{1}{n}}$$

L'hopitals's rule applies since the top and the bottom both go to zero; so,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\frac{-3}{n^2} \cos\left(\frac{3}{n}\right)}{\frac{-1}{n^2}} = \lim_{n \to \infty} 3\cos\left(\frac{3}{n}\right) = 3.$$

The sequence $\{a_n\}$ converges to 3.

2. Does the series $\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^n$ converge? Justify your answer. The limit of the individual terms $\left(1 - \frac{2}{n}\right)^n$ is equal to

$$\lim_{n \to \infty} \left(1 - \frac{2}{n} \right)^n = e^{-2} \neq 0.$$

The Individual Term Test for Divergence tells me that

the series
$$\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^n$$
 diverges.

3. Consider the following sequence of numbers: $a_2 = (1 - \frac{1}{4}), a_3 = (1 - \frac{1}{4})(1 - \frac{1}{9}), a_4 = (1 - \frac{1}{4})(1 - \frac{1}{9})(1 - \frac{1}{16}), \dots, a_n = (1 - \frac{1}{4})(1 - \frac{1}{9})(1 - \frac{1}{16})\dots(1 - \frac{1}{n^2}), \dots$. Does this infinite sequence converge? Justify your answer.

This is a sequence of positive numbers. Observe that $a_{n+1} = a_n(1 - \frac{1}{(n+1)^2})$. The number $1 - \frac{1}{(n+1)^2}$ is less than 1; so $a_{n+1} < a_n$. We are studying a decreasing bounded sequence of real numbers. The completeness axiom assures us that

the sequence $\{a_n\}$ converges.

4. Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converge? Justify your answer. We use the Alternating Series Test. Notice that the series alternates; $\frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}}$ for all n; and $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. The Alternating Series Test tells us that

the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges.

5. Does the series $\sum_{n=1}^{\infty} \frac{2\sqrt{n}}{n^2 + 1}$ converge? Justify your answer. I do a limit comparison with the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ has p = 3/2 > 1; so $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges. Observe that

$$\lim_{n \to \infty} \frac{\frac{2\sqrt{n}}{n^2 + 1}}{\frac{1}{n^{3/2}}} = \lim_{n \to \infty} \frac{2n^2}{n^2 + 1} = 2$$

Two is a number. It is not zero or infinity; so the limit comparison test tells us that $\sum_{n=1}^{\infty} \frac{2\sqrt{n}}{n^2+1}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ both converge or both diverge. We have already seen that $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges. We conclude that

the series
$$\sum_{n=1}^{\infty} \frac{2\sqrt{n}}{n^2 + 1}$$
 converges.

6. Where does $f(x) = \sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$ converge? Justify your answer. Apply the ratio test. Let

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x-2)^{n+1}}{(n+1)3^{n+1}}}{\frac{(x-2)^n}{n3^n}} \right| = \lim_{n \to \infty} \left| \frac{(x-2)^{n+1}n3^n}{(x-2)^n(n+1)3^{n+1}} \right|$$
$$= \lim_{n \to \infty} \frac{|x-2|}{3} \frac{n}{(n+1)} = \frac{|x-2|}{3}$$

Notice that $\rho < 1$ when $\frac{|x-2|}{3} < 1$; which is the same as |x-2| < 3; which is the same as -3 < x-2 < 3 or -1 < x < 5. If -1 < x < 5, then f(x) converges. If x < -1 or 5 < x, then f(x) diverges. At -1,

$$f(-1) = \sum_{n=1}^{\infty} \frac{(-3)^n}{n3^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$$

Thus, f(-1) is minus the sum of the Alternating Harmonic series, which we know converges. At 5,

$$f(5) = \sum_{n=1}^{\infty} \frac{3^n}{n3^n} = \sum_{n=1}^{\infty} \frac{1}{n};$$

which is the harmonic series which diverges. We conclude that

the function
$$f(x)$$
 converges for $-1 \le x < 5$ and diverges everywhere else.

7. Approximate $e^{\frac{-1}{10}}$ with an error at most 10^{-3} . Explain what you are doing.

We apply Taylor's Theorem which says that

$$|e^{x} - P_{n}(x)| = |R_{n}(x)| = \frac{e^{c}x^{n+1}}{(n+1)!}$$

for some c between 0 and x. In particular, when x = -.1, we have $-.1 \le c \le 0$; hence, $e^{-.1} \le e^c \le e^0 = 1$ (since $y = e^x$ is an increasing function). So, $|R_n(-1/10)| \le \frac{1}{10^{n+1}(n+1)!}$. We want $|R_n(-1/10)| \le 10^{-3}$. In other words, we want $10^3 \leq 10^{n+1}(n+1)!$. This inequality holds for n=2. We calculate $P_2(x) = 1 + x + x^2/2$. We conclude that

$$1 - \frac{1}{10} + \frac{1}{2 \times 10^2}$$
 approximates $e^{\frac{-1}{10}}$ with an error of at most 10^{-3} .

8. Approximate $\sum_{n=10}^{\infty} \frac{1}{n^2}$. Your approximation should be "close to" but

more than the actual value. Explain what you are doing.

I will use an improper integral to approximate $\sum_{n=10}^{\infty} \frac{1}{n^2}$. Draw the graph of $y = \frac{1}{x^2}$. Approximate the area under the curve starting at x = 9 by drawing rectangles with base from one integer to the next and height given by the y-coordinate on the curve above the right hand endpoint. I put a picture on a separate piece of paper. The area inside the boxes underestimates the area under the curve. The area inside the boxes is $\sum_{n=10}^{\infty} \frac{1}{n^2}$. The area under the curve is $\int_{9}^{\infty} x^{-2} dx$. Thus,

$$\sum_{n=10}^{\infty} \frac{1}{n^2} \le \int_{9}^{\infty} x^{-2} dx = \lim_{b \to \infty} \frac{-1}{x} \Big|_{9}^{b}$$
$$= \lim_{b \to \infty} \frac{-1}{b} + \frac{1}{9} = \frac{1}{9}.$$

We conclude that

$$\sum_{n=10}^{\infty} \frac{1}{n^2} \le \frac{1}{9}.$$

9. A ball is dropped from a height of 100 feet. Each time it bounces, it rebounds to $\frac{4}{5}$ its previous height. Find the total distance it travels before coming to rest.

The ball goes down 100 feet, up $\left(\frac{4}{5}\right)100$ feet, down $\left(\frac{4}{5}\right)100$ feet, up $\left(\frac{4}{5}\right)^2100$ feet, down $\left(\frac{4}{5}\right)^2 100$ feet, etc. In total the ball travels

$$100 + \left(\frac{4}{5}\right)100 + \left(\frac{4}{5}\right)100 + \left(\frac{4}{5}\right)^2 100 + \left(\frac{4}{5}\right)^2 100 + \left(\frac{4}{5}\right)^3 100 + \left(\frac{4}{5}\right)^3 100 + \dots$$

$$= 100 + \left[\left(\frac{4}{5}\right) 200 + \left(\frac{4}{5}\right)^2 200 + \left(\frac{4}{5}\right)^3 200 + \ldots \right]$$

feet. The expression inside the brackets is the geometric series with $r = \frac{4}{5}$ and $a = \left(\frac{4}{5}\right) 200$. This geometric series converges to $\frac{a}{1-r} = \frac{\left(\frac{4}{5}\right) 200}{\frac{1}{5}} = 800$. The ball travels 100 + 800 = 900 feet.