Math 142, Fall 2004, Exam 1, Solutions

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. If you would like, I will leave your exam outside my office door tomorrow morning, you may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 4:00 PM today.

1. Find $\int e^{5 x+9} d x$. Check your answer.

Let $u=5 x+9$. It follows that $d u=5 d x$ and the integral is

$$
\frac{1}{5} \int e^{u} d u=\frac{1}{5} e^{u}+C=\frac{1}{5} e^{5 x+9}+C
$$

CHECK: The derivative of the proposed answer is $\frac{1}{5} e^{5 x+9} 5 . \checkmark$
2. Find $\int \frac{1}{x \sqrt{\ln x}} d x$. Check your answer.

Let $u=\ln x$. It follows that $d u=\frac{d x}{x}$ and the integral is

$$
\int u^{-1 / 2} d u=2 u^{1 / 2}+C=2 \sqrt{\ln x}+C \text {. }
$$

CHECK: The derivative of the proposed answer is $2 \frac{1}{2}(\ln x)^{-1 / 2}\left(\frac{1}{x}\right) \cdot \checkmark$
3. If $y=e^{\sin \left(2 x^{2}+5 x\right)}$, then find $\frac{d y}{d x}$.

We see that

$$
\frac{d y}{d x}=(4 x+5) \cos \left(2 x^{2}+5 x\right) e^{\sin \left(2 x^{2}+5 x\right)} \text {. }
$$

4. If $y=x^{2} \ln \left(2 x^{2}+9 x\right)$, then find $\frac{d y}{d x}$.

We see that

$$
\frac{d y}{d x}=x^{2} \frac{4 x+9}{2 x^{2}+9 x}+2 x \ln \left(2 x^{2}+9 x\right) .
$$

5. If $y=x^{x}$, then find $\frac{d y}{d x}$.

Apply \ln to both sides to obtain: $\ln y=x \ln x$. Now, apply $\frac{d}{d x}$ to both sides:

$$
\frac{1}{y} \frac{d y}{d x}=x \frac{1}{x}+\ln x .
$$

Multiply both sides by y, which is equal to x^{x}, to see $\frac{d y}{d x}=x^{x}(1+\ln x)$.
6. Solve $\log _{2} x=1+\frac{1}{2} \log _{2}(2 x)$. Check your answer.

Raise 2 to each side:

$$
2^{\log _{2} x}=2^{1+\frac{1}{2} \log _{2}(2 x)}
$$

This is the same as $x=2 \sqrt{2 x}$. Square both sides to obtain $x^{2}=4(2 x)$, or $x^{2}-8 x=0$, or $x(x-8)=0$. So, $x=8$ or $x=0$. We see that $x=0$ is not in the domain of $\log _{2} x$; therefore, $x=8$.
CHECK: Plug $x=8$ into $\log _{2} x=1+\frac{1}{2} \log _{2}(2 x)$. We hope that $\log _{2} 8=$ $1+\frac{1}{2} \log _{2}(16)$. We see that 3 is equal to $1+\frac{1}{2}(4) \cdot \checkmark$
7. Find the area bounded by $y=e^{2 x}$, the x-axis, $x=0$, and $x=1$. Sketch a picture.
My picture is on another page. The area is equal to

$$
\int_{0}^{1} e^{2 x} d x=\left.\frac{1}{2} e^{2 x}\right|_{0} ^{1}=\frac{1}{2}\left(e^{2}-1\right) .
$$

8. Find the volume of the solid which is obtained by revolving the region bounded by $y=e^{3 x}$, the x-axis, $x=0$, and $x=1$, about the x-axis. Sketch a picture.
My picture is on another page. Spin each rectangle, get a disk of volume $\pi r^{2} t$, where the radius r is equal to the y-coordinate at the top of the rectangle minus the y-coordinate at the bottom of the rectangle, all written with respect to x. In other words, $r=e^{3 x}-0$. The thickness t is $d x$. The volume is

$$
\pi \int_{0}^{1}\left(e^{3 x}\right)^{2} d x=\pi \int_{0}^{1}\left(e^{6 x}\right) d x=\left.\pi \frac{1}{6} e^{6 x}\right|_{0} ^{1}=\frac{\pi}{6}\left(e^{6}-1\right)
$$

9. Let $f(x)=\frac{x+3}{x-2}$ for $x \neq 2$. Find $f^{-1}(x)$. What is the domain of $f^{-1}(x)$?

Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of $f^{-1}(x)$.
Let $y=f^{-1}(x)$. So, $f(y)=x$. In other words, y is in the domain of f (so $y \neq 2$) and $\frac{y+3}{y-2}=x$. We want to find y, so we multiply both sides by $y-2$ to get: $y+3=x(y-2)$. This expression is linear in y, so we get every term with y on one side and every term without y on the other side: $2 x+3=x y-y$, or $2 x+3=(x-1) y$, or $y=\frac{2 x+3}{x-1}$. It follows that

$$
f^{-1}(x)=\frac{2 x+3}{x-1} \text { for } x \neq 1
$$

Take $x \neq 1$. Observe that

$$
f\left(f^{-1}(x)\right)=f\left(\frac{2 x+3}{x-1}\right)=\frac{\frac{2 x+3}{x-1}+3}{\frac{2 x+3}{x-1}-2}
$$

Multiply top and bottom by $x-1$ to get:

$$
\frac{2 x+3+3(x-1)}{2 x+3-2(x-1)}=\frac{5 x}{5}=x
$$

10. Let $f(x)=x^{2} \ln x$. What is the domain of $f(x)$? Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of $y=f(x)$. Graph $y=f(x)$.

The domain of $f(x)$ is all POSITIVE x. We see that

$$
f^{\prime}(x)=x^{2} \frac{1}{x}+2 x \ln x=x(1+2 \ln x) .
$$

So, $f^{\prime}(x)=0$ for $x=e^{-1 / 2}, f^{\prime}(x)$ is positive for $e^{-1 / 2}<x$ and $f^{\prime}(x)<0$ for $0<x<e^{-1 / 2}$. In other words,
$\quad\left(\frac{1}{\sqrt{e}}, \frac{-1}{2 e}\right)$ is the local minimum,
the graph does not have a local maximum,
the graph is decreasing for $0<x<\frac{1}{\sqrt{e}}$, and
the graph is increasing for $\frac{1}{\sqrt{e}}<x$.

We see that

$$
f^{\prime \prime}(x)=x \frac{2}{x}+1+2 \ln x=3+2 \ln x
$$

Thus, $f^{\prime \prime}(x)$ is zero for $x=e^{-3 / 2}, f^{\prime \prime}(x)$ is positive for $e^{-3 / 2}<x$, and $f^{\prime \prime}(x)$ is negative for $0<x<e^{-3 / 2}$. We conclude that
$\left(\frac{1}{(\sqrt{e})^{3}}, \frac{-3}{2 e^{3}}\right)$ is the point of inflection,
the graph is concave down for $0<x<\frac{1}{(\sqrt{e})^{3}}$, and
the graph is concave up for $\frac{1}{(\sqrt{e})^{3}}<x$.
In Chapter 9, you will learn L'hopital's rule which will allow you to calculate $\lim _{x \rightarrow 0^{+}} x^{2} \ln x=0$. I will include this on my graph, you won't know this ahead of time. But you do know that when x is near zero and above zero, then $f(x)$ is negative, decreasing, and concave down. My picture is on another page.

