Math 142, Fall 2004, Exam 1, Solutions

PRINT Your Name:

There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. \boxed{CIRCLE} your answer. **NO CALCULATORS! CHECK** your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your exam outside my office door tomorrow morning, you may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 4:00 PM today.

1. Find $\int e^{5x+9} dx$. Check your answer.

Let u = 5x + 9. It follows that du = 5dx and the integral is

$$\frac{1}{5}\int e^{u}du = \frac{1}{5}e^{u} + C = \boxed{\frac{1}{5}e^{5x+9} + C}.$$

CHECK: The derivative of the proposed answer is $\frac{1}{5}e^{5x+95}$.

2. Find $\int \frac{1}{x\sqrt{\ln x}} dx$. Check your answer.

Let $u = \ln x$. It follows that $du = \frac{dx}{x}$ and the integral is

$$\int u^{-1/2} du = 2u^{1/2} + C = \boxed{2\sqrt{\ln x} + C}$$

CHECK: The derivative of the proposed answer is $2\frac{1}{2}(\ln x)^{-1/2}(\frac{1}{x})$. \checkmark

3. If $y = e^{\sin(2x^2 + 5x)}$, then find $\frac{dy}{dx}$.

We see that

$$\frac{dy}{dx} = (4x+5)\cos(2x^2+5x)e^{\sin(2x^2+5x)}$$

4. If $y = x^2 \ln(2x^2 + 9x)$, then find $\frac{dy}{dx}$. We see that

$$\frac{dy}{dx} = x^2 \frac{4x+9}{2x^2+9x} + 2x\ln(2x^2+9x)$$

5. If $y = x^x$, then find $\frac{dy}{dx}$.

Apply ln to both sides to obtain: $\ln y = x \ln x$. Now, apply $\frac{d}{dx}$ to both sides:

$$\frac{1}{y}\frac{dy}{dx} = x\frac{1}{x} + \ln x.$$

Multiply both sides by y, which is equal to x^x , to see $\left[\frac{dy}{dx} = x^x(1 + \ln x)\right]$.

6. Solve $\log_2 x = 1 + \frac{1}{2} \log_2(2x)$. Check your answer.

Raise 2 to each side:

 $2^{\log_2 x} = 2^{1 + \frac{1}{2}\log_2(2x)}.$

This is the same as $x = 2\sqrt{2x}$. Square both sides to obtain $x^2 = 4(2x)$, or $x^2 - 8x = 0$, or x(x - 8) = 0. So, x = 8 or x = 0. We see that x = 0 is not in the domain of $\log_2 x$; therefore, x = 8.

CHECK: Plug x = 8 into $\log_2 x = 1 + \frac{1}{2}\log_2(2x)$. We hope that $\log_2 8 = 1 + \frac{1}{2}\log_2(16)$. We see that 3 is equal to $1 + \frac{1}{2}(4)$.

7. Find the area bounded by $y = e^{2x}$, the *x*-axis, x = 0, and x = 1. Sketch a picture.

My picture is on another page. The area is equal to

$$\int_0^1 e^{2x} dx = \frac{1}{2} e^{2x} \Big|_0^1 = \boxed{\frac{1}{2} (e^2 - 1)}.$$

8. Find the volume of the solid which is obtained by revolving the region bounded by $y = e^{3x}$, the *x*-axis, x = 0, and x = 1, about the *x*-axis. Sketch a picture.

My picture is on another page. Spin each rectangle, get a disk of volume $\pi r^2 t$, where the radius r is equal to the y-coordinate at the top of the rectangle minus the y-coordinate at the bottom of the rectangle, all written with respect to x. In other words, $r = e^{3x} - 0$. The thickness t is dx. The volume is

$$\pi \int_0^1 (e^{3x})^2 dx = \pi \int_0^1 (e^{6x}) dx = \pi \frac{1}{6} e^{6x} \Big|_0^1 = \boxed{\frac{\pi}{6} (e^6 - 1)}.$$

9. Let $f(x) = \frac{x+3}{x-2}$ for $x \neq 2$. Find $f^{-1}(x)$. What is the domain of $f^{-1}(x)$? Verify that $f(f^{-1}(x)) = x$ for all x in the domain of $f^{-1}(x)$.

Let $y = f^{-1}(x)$. So, f(y) = x. In other words, y is in the domain of f (so $y \neq 2$) and $\frac{y+3}{y-2} = x$. We want to find y, so we multiply both sides by y-2 to get: y+3 = x(y-2). This expression is linear in y, so we get every term with y on one side and every term without y on the other side: 2x + 3 = xy - y, or 2x + 3 = (x - 1)y, or $y = \frac{2x+3}{x-1}$. It follows that

$$f^{-1}(x) = \frac{2x+3}{x-1}$$
 for $x \neq 1$.

Take $x \neq 1$. Observe that

$$f(f^{-1}(x)) = f\left(\frac{2x+3}{x-1}\right) = \frac{\frac{2x+3}{x-1}+3}{\frac{2x+3}{x-1}-2}.$$

Multiply top and bottom by x - 1 to get:

$$\frac{2x+3+3(x-1)}{2x+3-2(x-1)} = \frac{5x}{5} = x. \checkmark$$

10. Let $f(x) = x^2 \ln x$. What is the domain of f(x)? Where is f(x) increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of y = f(x). Graph y = f(x).

The domain of f(x) is all POSITIVE x. We see that

$$f'(x) = x^2 \frac{1}{x} + 2x \ln x = x(1+2\ln x).$$

So, f'(x) = 0 for $x = e^{-1/2}$, f'(x) is positive for $e^{-1/2} < x$ and f'(x) < 0 for $0 < x < e^{-1/2}$. In other words,

 $(\frac{1}{\sqrt{e}}, \frac{-1}{2e})$ is the local minimum, the graph does not have a local maximum, the graph is decreasing for $0 < x < \frac{1}{\sqrt{e}}$, and the graph is increasing for $\frac{1}{\sqrt{e}} < x$.

We see that

$$f''(x) = x\frac{2}{x} + 1 + 2\ln x = 3 + 2\ln x.$$

Thus, f''(x) is zero for $x = e^{-3/2}$, f''(x) is positive for $e^{-3/2} < x$, and f''(x) is negative for $0 < x < e^{-3/2}$. We conclude that

 $(\frac{1}{(\sqrt{e})^3}, \frac{-3}{2e^3})$ is the point of inflection, the graph is concave down for $0 < x < \frac{1}{(\sqrt{e})^3}$, and the graph is concave up for $\frac{1}{(\sqrt{e})^3} < x$.

In Chapter 9, you will learn L'hopital's rule which will allow you to calculate $\lim_{x\to 0^+} x^2 \ln x = 0$. I will include this on my graph, you won't know this ahead of time. But you do know that when x is near zero and above zero, then f(x) is negative, decreasing, and concave down. My picture is on another page.