Math 142, Exam 4, Fall 2002

Name \qquad
There are 11 problems on 6 pages. Problem 1 is worth 10 points. Each of the other problems is worth 9 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. Find the limit of the sequence whose $n^{\text {th }}$ term is

$$
a_{n}=n \sin \left(\frac{3}{n}\right)
$$

We see that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n \sin \left(\frac{3}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{3}{n}\right)}{\frac{1}{n}}
$$

L'hopitals's rule applies since the top and the bottom both go to zero; so,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{-3}{n^{2}} \cos \left(\frac{3}{n}\right)}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} 3 \cos \left(\frac{3}{n}\right)=3 .
$$

The sequence $\left\{a_{n}\right\}$ converges to 3 .
2. Does the series $\sum_{n=1}^{\infty}\left(1-\frac{2}{n}\right)^{n}$ converge? Justify your answer.
The limit of the individual terms $\left(1-\frac{2}{n}\right)^{n}$ is equal to

$$
\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}=e^{-2} \neq 0
$$

The Individual Term Test for Divergence tells me that

$$
\text { the series } \sum_{n=1}^{\infty}\left(1-\frac{2}{n}\right)^{n} \text { diverges. }
$$

3. Consider the following sequence of numbers: $a_{2}=$ $\left(1-\frac{1}{4}\right), a_{3}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right), a_{4}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)$, $\ldots, a_{n}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right) \ldots\left(1-\frac{1}{n^{2}}\right), \ldots$. Does this infinite sequence converge? Justify your answer.
This is a sequence of positive numbers. Observe that $a_{n+1}=$ $a_{n}\left(1-\frac{1}{(n+1)^{2}}\right)$. The number $1-\frac{1}{(n+1)^{2}}$ is less than 1 ; so $a_{n+1}<a_{n}$. We are studying a decreasing bounded sequence of real numbers. The completeness axiom assures us that

$$
\text { the sequence }\left\{a_{n}\right\} \text { converges. }
$$

4. Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converge? Justify your answer.
We use the Alternating Series Test. Notice that the series alternates; $\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n+1}}$ for all n; and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$. The Alternating Series Test tells us that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \text { converges. }
$$

5. Does the series $\sum_{n=1}^{\infty} \frac{2 \sqrt{n}}{n^{2}+1}$ converge? Justify your answer.
I do a limit comparison with the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ has $p=3 / 2>1$; so $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. Observe that

$$
\lim _{n \rightarrow \infty} \frac{\frac{2 \sqrt{n}}{n^{2}+1}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}+1}=2
$$

Two is a number. It is not zero or infinity; so the limit comparison test tells us that $\sum_{n=1}^{\infty} \frac{2 \sqrt{n}}{n^{2}+1}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ both converge or both diverge. We have already seen that $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. We conclude that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{2 \sqrt{n}}{n^{2}+1} \text { converges. }
$$

6. Where does $f(x)=\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$ converge? Justify your answer.
Apply the ratio test. Let

$$
\begin{aligned}
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-2)^{n+1}}{(n+1) 3^{n+1}}}{\frac{(x-2)^{n}}{n 3^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1} n 3^{n}}{(x-2)^{n}(n+1) 3^{n+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x-2|}{3} \frac{n}{(n+1)}=\frac{|x-2|}{3}
\end{aligned}
$$

Notice that $\rho<1$ when $\frac{|x-2|}{3}<1$; which is the same as $|x-2|<3$; which is the same as $-3<x-2<3$ or $-1<x<5$. If $-1<x<5$, then $f(x)$ converges. If $x<-1$ or $5<x$, then $f(x)$ diverges. At -1 ,

$$
f(-1)=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

Thus, $f(-1)$ is minus the sum of the Alternating Harmonic series, which we know converges. At 5 ,

$$
f(5)=\sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n} ;
$$

which is the harmonic series which diverges. We conclude that the function $f(x)$ converges for $-1 \leq x<5$ and diverges everywhere else.
7. Find $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-x^{2}+\frac{x^{6}}{6}}{x^{10}}$.

We know that

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

It follows that

$$
\sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\ldots
$$

and

$$
\sin \left(x^{2}\right)-x^{2}+\frac{x^{6}}{6}=\frac{x^{10}}{5!}-\ldots
$$

Thus,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-x^{2}+\frac{x^{6}}{6}}{x^{10}}=\lim _{x \rightarrow 0} \frac{\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\frac{x^{18}}{9!}-\ldots}{x^{10}} \\
& \quad=\lim _{x \rightarrow 0}\left(\frac{1}{5!}-\frac{x^{4}}{7!}+\frac{x^{8}}{9!}-\ldots\right)=\frac{1}{5!}=\frac{1}{120} .
\end{aligned}
$$

8. Which familair function is equal to

$$
f(x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{3!}+\frac{x^{6}}{4!}+\frac{x^{8}}{5!}+\frac{x^{10}}{6!}+\ldots \text { ? Explain. }
$$

Notice that the exponent is "almost" twice the denominator if one forgets about the factorial. In other words,

$$
x^{2} f(x)=x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\frac{x^{8}}{4!}+\frac{x^{10}}{5!}+\frac{x^{12}}{6!}+\cdots=\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!} .
$$

Thus,

$$
1+x^{2} f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

We know that $e^{y}=\sum_{n=0}^{\infty} \frac{y^{n}}{n!}$. It follows that

$$
e^{x^{2}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

In other words,

$$
1+x^{2} f(x)=e^{x^{2}}
$$

and

$$
f(x)=\frac{e^{x^{2}}-1}{x^{2}}
$$

9. Approximate $e^{\frac{-1}{10}}$ with an error at most 10^{-3}. Explain what you are doing.
We know that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. It follows that

$$
e^{\frac{-1}{10}}=1-\frac{1}{10}+\frac{1}{2 \times 10^{2}}-\frac{1}{3!\times 10^{3}}+\ldots
$$

This is an alternating series. We know that $\frac{1}{n!\times 10^{n}}>\frac{1}{(n+1)!\times 10^{n+1}}$. It is clear that $\lim _{n \rightarrow \infty} \frac{1}{n!\times 10^{n}}=0$. The Alternating series test applies. The first term which is less than 10^{-3} is $\frac{1}{3!\times 10^{3}}$. We conclude that

$$
\begin{aligned}
& 1-\frac{1}{10}+\frac{1}{2 \times 10^{2}} \text { approximates } e^{\frac{-1}{10}} \text { with an error of } \\
& \text { at most } 10^{-3} .
\end{aligned}
$$

10. Approximate $\sum_{n=10}^{\infty} \frac{1}{n^{2}}$. Your approximation should be "close to" but more than the actual value. Explain what you are doing.
I will use an improper integral to approximate $\sum_{n=10}^{\infty} \frac{1}{n^{2}}$. Draw the graph of $y=\frac{1}{x^{2}}$. Approximate the area under the curve starting at $x=9$ by drawing rectangles with base from one integer to the next and height given by the y-coordinate on the curve above the right hand endpoint. I put a picture on a separate piece of paper. The area inside the boxes underestimates the area under the curve. The area inside the boxes is $\sum_{n=10}^{\infty} \frac{1}{n^{2}}$. The area under the curve is $\int_{9}^{\infty} x^{-2} d x$. Thus,

$$
\begin{aligned}
\sum_{n=10}^{\infty} \frac{1}{n^{2}} & \leq \int_{9}^{\infty} x^{-2} d x=\left.\lim _{b \rightarrow \infty} \frac{-1}{x}\right|_{9} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{-1}{b}+\frac{1}{9}=\frac{1}{9}
\end{aligned}
$$

We conclude that

$$
\sum_{n=10}^{\infty} \frac{1}{n^{2}} \leq \frac{1}{9}
$$

11. A ball is dropped from a height of 100 feet. Each time it bounces, it rebounds to $\frac{4}{5}$ its previous height. Find the total distance it travels before coming to rest.
The ball goes down 100 feet, up $\left(\frac{4}{5}\right) 100$ feet, down $\left(\frac{4}{5}\right) 100$ feet, up $\left(\frac{4}{5}\right)^{2} 100$ feet, down $\left(\frac{4}{5}\right)^{2} 100$ feet, etc. In total the ball travels

$$
\begin{gathered}
100+\left(\frac{4}{5}\right) 100+\left(\frac{4}{5}\right) 100+\left(\frac{4}{5}\right)^{2} 100+\left(\frac{4}{5}\right)^{2} 100 \\
+\left(\frac{4}{5}\right)^{3} 100+\left(\frac{4}{5}\right)^{3} 100+\ldots
\end{gathered}
$$

$$
=100+\left[\left(\frac{4}{5}\right) 200+\left(\frac{4}{5}\right)^{2} 200+\left(\frac{4}{5}\right)^{3} 200+\ldots\right]
$$

feet. The expression inside the brackets is the geometric series with $r=\frac{4}{5}$ and $a=\left(\frac{4}{5}\right) 200$. This geometric series converges to $\frac{a}{1-r}=\frac{\left(\frac{4}{5}\right) 200}{\frac{1}{5}}=800$. The ball travels $100+800=900$ feet.

