Exam 3 Fall 2002 Math 142

Name \qquad
There are 10 problems on 5 pages. Each problem is worth 10 points. each. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

1. Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=n \sin \left(\frac{1}{2 n}\right)$. We see that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{2 n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{2 n}\right)}{\frac{1}{n}}
$$

The top and the bottom both go to zero, so l'Hopital's rule tells us that this limit is equal to

$$
=\lim _{n \rightarrow \infty} \frac{\frac{-1}{2 n^{2}} \cos \left(\frac{1}{2 n}\right)}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1}{2} \cos \left(\frac{1}{2 n}\right)=\frac{1}{2}
$$

We conclude that

$$
\text { the sequence converges to } \frac{1}{2} \text {. }
$$

2. Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n-1}{n+1}\right)^{n}$. We see that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{2}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{\left(1-\frac{2}{n+1}\right)^{n+1}}{1-\frac{2}{n+1}}
$$

Let $m=n+1$. Our limit is equal to

$$
\lim _{m \rightarrow \infty} \frac{\left(1-\frac{2}{m}\right)^{m}}{1-\frac{2}{m}}
$$

We know that

$$
\lim _{x \rightarrow \infty}\left(1+\frac{r}{x}\right)^{x}=e^{r}
$$

We conclude that our limit is equal to $\frac{e^{-2}}{1}$. Thus,

$$
\text { the sequence converges to } e^{-2} .
$$

3. Find $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$.

The problem is equal to
$\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{1}{1+x^{2}} d x=\left.\lim _{b \rightarrow \infty} \arctan x\right|_{0} ^{b}=\lim _{b \rightarrow \infty} \arctan (b)-\arctan (0)=\pi / 2-0=\frac{\pi}{2}$.
4. Find $\int_{-3}^{1} \frac{1}{x^{2}} d x$.

The function $\frac{1}{x^{2}}$ goes to infinity at $x=0$. It is absolutely necessary to realize that this is an improper integral. A picture is included on another page. The integral is equal to

$$
\begin{gathered}
\lim _{b \rightarrow 0^{-}} \int_{-3}^{b} \frac{1}{x^{2}} d x+\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{1}{x^{2}} d x=\left.\lim _{b \rightarrow 0^{-}} \frac{-1}{x}\right|_{-3} ^{b}+\left.\lim _{a \rightarrow 0^{+}} \frac{-1}{x}\right|_{a} ^{1} \\
=\lim _{b \rightarrow 0^{-}} \frac{-1}{b}-\frac{-1}{-3}+\lim _{a \rightarrow 0^{+}} \frac{-1}{1}-\frac{-1}{a}=+\infty-\frac{-1}{-3}-1+\infty \\
\text { the integral diverges to }+\infty .
\end{gathered}
$$

By the way, the picture confirms that the integral represents an area. The answer can not possibly be zero or any negative number.
5. Find $\int \frac{1}{\sqrt{4-9 x^{2}}} d x$. Check your answer.

This integral is equal to

$$
\int \frac{1}{2 \sqrt{1-\frac{9 x^{2}}{4}}} d x
$$

Let $u=3 x / 2$. We have $d u=(3 / 2) d x$ and the integral is equal to

$$
\frac{2}{2 \cdot 3} \int \frac{1}{\sqrt{1-u^{2}}} d u=\frac{1}{3} \arcsin u+C=\frac{1}{3} \arcsin (3 x / 2)+C .
$$

CHECK: The derivative of our proposed answer is

$$
\frac{1}{3} \frac{\frac{3}{2}}{\sqrt{1-\frac{9 x^{2}}{4}}}=\frac{1}{2 \sqrt{1-\frac{9 x^{2}}{4}}}=\frac{1}{\sqrt{4-9 x^{2}}} . \checkmark
$$

6. Find $\int \frac{\ln x}{x^{2}} d x$. Check your answer.

We use integration by parts. Let $u=\ln x$ and $d v=x^{-2}$. We calculate that $d u=\frac{1}{x}$ and $v=\frac{-1}{x}$. The original integral is equal to

$$
\frac{-\ln x}{x}+\int x^{-2} d x=\frac{-\ln x}{x}+\frac{-1}{x}+C
$$

CHECK: The derivative of our proposed answer is

$$
-\ln x\left(-\frac{1}{x^{2}}\right)-\frac{1}{x^{2}}+\frac{1}{x^{2}}=\frac{\ln x}{x^{2}} . \checkmark
$$

7. Find $\int \frac{4 x^{2}+x-2}{x^{2}(x-1)} d x$. Check your answer.

Let

$$
\frac{4 x^{2}+x-2}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

Multiply both sides by $x^{2}(x-1)$.

$$
\begin{aligned}
& 4 x^{2}+x-2=A x(x-1)+B(x-1)+C x^{2} \\
& 4 x^{2}+x-2=(A+C) x^{2}+(B-A) x-B
\end{aligned}
$$

We see that $B=2 ; 1=B-A$ (so $A=1$); and $4=A+C$ (so $C=3$). The original problem is equal to

$$
\int \frac{1}{x}+\frac{2}{x^{2}}+\frac{3}{x-1} d x=\ln |x|-\frac{2}{x}+3 \ln |x-1|+C .
$$

CHECK: The derivative of our proposed answer is

$$
\frac{1}{x}+\frac{2}{x^{2}}+\frac{3}{x-1}=\frac{x(x-1)+2(x-1)+3 x^{2}}{x^{2}(x-1)}=\frac{4 x^{2}+x-2}{x^{2}(x-1)} . \checkmark
$$

8. Find $\int \frac{3 x^{2}-3 x+1}{x\left(x^{2}+1\right)} d x$. Check your answer.

Let

$$
\frac{3 x^{2}-3 x+1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} .
$$

Multiply both sides by $x\left(x^{2}+1\right)$ to get

$$
\begin{gathered}
3 x^{2}-3 x+1=A\left(x^{2}+1\right)+(B x+C) x \\
3 x^{2}-3 x+1=(A+B) x^{2}+C x+A
\end{gathered}
$$

We see that $A=1, C=-3$, and $A+B=3$ (so, $B=2$). The original problem is equal to

$$
\int \frac{1}{x}+\frac{2 x-3}{x^{2}+1} d x=\ln |x|+\ln \left(x^{2}+1\right)-3 \arctan x+C .
$$

CHECK: The derivative of our proposed answer is

$$
\frac{1}{x}+\frac{2 x}{x^{2}+1}-\frac{3}{x^{2}+1}=\frac{x^{2}+1+2 x^{2}-3 x}{x^{2}+1}=\frac{3 x^{2}-3 x+1}{x^{2}+1} . \checkmark
$$

9. Find the general solution of $\frac{d y}{d x}+\frac{3 x}{x^{2}+1} y=\frac{6 x}{x^{2}+1}$. Check your answer.

This problem is in the form $y^{\prime}+P(x) y=Q(x)$ Let

$$
\mu(x)=e^{\int P(x) d x}=e^{\int \frac{3 x}{x^{2}+1} d x}=e^{\frac{3}{2} \ln \left(x^{2}+1\right)}=\left(x^{2}+1\right)^{\frac{3}{2}} .
$$

Multiply both sides of the original problem by $\mu(x)$ to get

$$
\left(x^{2}+1\right)^{\frac{3}{2}} \frac{d y}{d x}+\left(x^{2}+1\right)^{\frac{1}{2}} 3 x y=6 x\left(x^{2}+1\right)^{\frac{1}{2}} .
$$

Notice that the left side is now equal to

$$
\frac{d}{d x}\left(\left(x^{2}+1\right)^{\frac{3}{2}} y\right)
$$

Integrate both sides with respect to x to get

$$
\left(x^{2}+1\right)^{\frac{3}{2}} y=\int 6 x\left(x^{2}+1\right)^{\frac{1}{2}} d x=2\left(x^{2}+1\right)^{\frac{3}{2}}+C .
$$

So,

$$
y=2+C\left(x^{2}+1\right)^{-\frac{3}{2}}
$$

CHECK. We compute that

$$
\begin{gathered}
\frac{d y}{d x}+\frac{3 x}{x^{2}+1} y=-C \frac{3}{2} 2 x\left(x^{2}+1\right)^{-\frac{5}{2}}+\frac{3 x}{x^{2}+1}\left(2+C\left(x^{2}+1\right)^{-\frac{3}{2}}\right) \\
=\frac{-3 C x}{\left(x^{2}+1\right)^{\frac{5}{2}}}+\frac{6 x}{x^{2}+1}+\frac{3 C x}{\left(x^{2}+1\right)^{\frac{5}{2}}}=\frac{6 x}{x^{2}+1} . \checkmark
\end{gathered}
$$

10. Which number $\int_{1}^{n+1} \frac{1}{\sqrt{x}} d x$ or $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ is bigger? Does the sequence whose $n^{\text {th }}$ term is $a_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ converge? Justify your answer.
I have drawn a picture on a separate page. The integral is equal to the area under the curve $y=\frac{1}{\sqrt{x}}$ from $x=1$ to $x=n+1$. The sum is equal to the area inside n boxes which OVER estimate the area under the curve. We conclude that the sum is LARGER than the integral. The limit as n goes to infinity of the integral is

$$
\left.\lim _{n \rightarrow \infty} 2 \sqrt{x}\right|_{1} ^{n+1}=\lim _{n \rightarrow \infty} 2 \sqrt{n+1}-2 \sqrt{1}=\infty
$$

We see that

$$
\lim _{n \rightarrow \infty} a_{n}>\lim _{n \rightarrow \infty} \int_{1}^{n+1} \frac{1}{\sqrt{x}} d x=+\infty
$$

We conclude that

$$
\text { the sequence }\left\{a_{n}\right\} \text { diverges to }+\infty \text {. }
$$

