Math 142, Exam 2, Fall 2002

Name _____________________________

There are 10 problems on 6 pages. Each problem is worth 10 points each. SHOW your work. [CIRCLE] your answer. NO CALCULATORS! CHECK your answer whenever possible.

1. Find \(\int \sin^5 x \, dx \). Check your answer.

2. Find \(\int \cos^4 x \, dx \).

3. Find \(\int \sin 4x \cos 5x \, dx \).

4. Find \(\int \sec^3 x \, dx \). Check your answer.

5. Find \(\int x \cos x \, dx \). Check your answer.

6. Find \(\int \frac{\sqrt{1-x^2}}{x} \, dx \).

7. If \(y = \arcsin(2x^2) \), then find \(\frac{dy}{dx} \).

8. Simplify \(\cos[2 \arcsin(\frac{1}{3})] \).

9. Find the solution of the differential equation \(\frac{dy}{dx} - \frac{y}{x} = 3x^3 \) which satisfies \(y(1) = 0 \). Check your answer.

10. Let \(f(x) = x \ln x \). What is the domain of \(f(x) \)? Where is \(f(x) \) increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of \(y = f(x) \). Graph \(y = f(x) \).