Math 142, Exam 2, Fall 2002

Name \qquad
There are 10 problems on 6 pages. Each problem is worth 10 points. each. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

1. Find $\int \sin ^{5} x d x$. Check your answer.

Let $u=\cos x$. It follows that $d u=-\sin x d x$. We have

$$
\begin{gathered}
\int \sin ^{5} x d x=\int\left(1-\cos ^{2} x\right)^{2} \sin x d x=-\int\left(1-u^{2}\right)^{2} d u=-\int\left(1-2 u^{2}+u^{4}\right) d u \\
=-\left(u-\frac{2 u^{3}}{3}+\frac{u^{5}}{5}\right)+C=-\left(\cos x-\frac{2 \cos ^{3} x}{3}+\frac{\cos ^{5} x}{5}\right)+C
\end{gathered}
$$

Check. The derivative of $-\left(\cos x-\frac{2 \cos ^{3} x}{3}+\frac{\cos ^{5} x}{5}\right)$ is

$$
\begin{gathered}
-\left(-\sin x+2 \cos ^{2} x \sin x-\cos ^{4} x \sin x\right)=\sin x\left(1-2 \cos ^{2} x+\cos ^{4} x\right) \\
=\sin x\left(1-\cos ^{2} x\right)^{2} \checkmark
\end{gathered}
$$

2. Find $\int \cos ^{4} x d x$.

We have

$$
\begin{gathered}
\int \cos ^{4} x d x=\int\left(\frac{1+\cos 2 x}{2}\right)^{2} d x=\frac{1}{4} \int\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) d x \\
=\frac{1}{4} \int\left(1+2 \cos 2 x+\frac{1+\cos 4 x}{2}\right) d x=\frac{1}{4} \int\left(\frac{3}{2}+2 \cos 2 x+\frac{\cos 4 x}{2}\right) d x \\
=\frac{1}{4}\left[\frac{3 x}{2}+\sin 2 x+\frac{\sin 4 x}{8}\right]+C .
\end{gathered}
$$

3. Find $\int \sin 4 x \cos 5 x d x$.

Add
$\sin (A+B)=\sin A \cos B+\cos A \sin B$ and
$\sin (A-B)=\sin A \cos B-\cos A \sin B$ to get

$$
\frac{1}{2}[\sin (A+B)+\sin (A-B)]=\sin A \cos B
$$

Take $A=4 x$ and $B=5 x$ to get

$$
\int \sin 4 x \cos 5 x d x=\frac{1}{2} \int(\sin 9 x-\sin x) d x=\frac{1}{2}\left(\frac{-\cos 9 x}{9}+\cos x\right)+C .
$$

4. Find $\int \sec ^{3} x d x$. Check your answer.

Use integration by parts with $u=\sec x$ and $d v=\sec ^{2} x d x$. It follows that $d u=\sec x \tan x d x$ and $v=\tan x$. Thus,

$$
\int \sec ^{3} x d x=\sec x \tan x-\int \sec x \tan ^{2} x d x
$$

I know $\sin ^{2} x+\cos ^{2} x=1$. So, I also know $\tan ^{2} x+1=\sec ^{2} x$. So,

$$
\begin{gathered}
\int \sec ^{3} x d x=\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x \\
=\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x
\end{gathered}
$$

Add $\int \sec ^{3} x d x$ to both sides to see that

$$
2 \int \sec ^{3} x d x=\sec x \tan x+\ln |\sec x+\tan x|+C .
$$

We conclude that

$$
\int \sec ^{3} x d x=\frac{1}{2}(\sec x \tan x+\ln |\sec x+\tan x|)+K
$$

Check. The derivative of $\frac{1}{2}(\sec x \tan x+\ln |\sec x+\tan x|)$ is

$$
\frac{1}{2}\left(\sec ^{3} x+\sec x \tan ^{2} x+\sec x\right)=\frac{1}{2}\left(\sec ^{3} x+\sec x\left(\tan ^{2} x+1\right)\right) \cdot \checkmark
$$

5. Find $\int x \cos x d x$. Check your answer.

Use integration by parts. Take $u=x$ and $d v=\cos x$. We calculate $d u=d x$ and $v=\sin x$. We have

$$
\int x \cos x d x=x \sin x-\int \sin x d x=x \sin x+\cos x+C .
$$

Check. The derivative of $x \sin x+\cos x$ is

$$
x \cos x+\sin x-\sin x . \checkmark
$$

6. Find $\int \frac{\sqrt{1-x^{2}}}{x} d x$.

Let $x=\sin \theta$. In this case, $\sqrt{1-x^{2}}=\cos \theta, d x=\cos \theta d \theta$, and

$$
\int \frac{\sqrt{1-x^{2}}}{x} d x=\int \frac{\cos ^{2} \theta}{\sin \theta} d \theta=\int \frac{1-\sin ^{2} \theta}{\sin \theta} d \theta=\int \csc \theta-\sin \theta d \theta
$$

$$
\begin{gathered}
=\int \frac{\csc \theta(\csc \theta+\cot \theta)}{\csc \theta+\cot \theta}-\sin \theta d \theta=-\ln |\csc \theta+\cot \theta|+\cos \theta+C \\
=-\ln \left|\frac{1+\cos \theta}{\sin \theta}\right|+\cos \theta+C=-\ln |1+\cos \theta|+\ln |\sin \theta|+\cos \theta+C \\
=-\ln \left|1+\sqrt{1-x^{2}}\right|+\ln |x|+\sqrt{1-x^{2}}+C .
\end{gathered}
$$

Check. Observe that the derivative of $-\ln \left(1+\sqrt{1-x^{2}}\right)+\ln x+\sqrt{1-x^{2}}$ is

$$
\begin{gathered}
\frac{\frac{x}{\sqrt{1-x^{2}}}}{1+\sqrt{1-x^{2}}}+\frac{1}{x}+\frac{-x}{\sqrt{1-x^{2}}}=\frac{x}{\left(1+\sqrt{1-x^{2}}\right) \sqrt{1-x^{2}}}+\frac{1}{x}+\frac{-x\left(1+\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}\left(1+\sqrt{1-x^{2}}\right)} \\
=\frac{x-x-x \sqrt{1-x^{2}}}{\sqrt{1-x^{2}}\left(1+\sqrt{1-x^{2}}\right)}+\frac{1}{x}=\frac{-x}{\left(1+\sqrt{1-x^{2}}\right)}+\frac{1}{x}=\frac{-x^{2}+1+\sqrt{1-x^{2}}}{x\left(1+\sqrt{1-x^{2}}\right)} \\
=\frac{\sqrt{1-x^{2}}\left(\sqrt{-x^{2}+1}+1\right)}{x\left(1+\sqrt{1-x^{2}}\right)}=\frac{\sqrt{1-x^{2}}}{x} .
\end{gathered}
$$

7. If $y=\arcsin \left(2 x^{2}\right)$, then find $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=\frac{4 x}{\sqrt{1-4 x^{4}}}
$$

8. Simplify $\cos \left[2 \arcsin \left(\frac{1}{3}\right)\right]$.

$$
\cos \left[2 \arcsin \left(\frac{1}{3}\right)\right]=\cos ^{2}\left[\arcsin \left(\frac{1}{3}\right)\right]-\sin ^{2}\left[\arcsin \left(\frac{1}{3}\right)\right] .
$$

It is clear that $\sin \left(\arcsin \left(\frac{1}{3}\right)\right)=\frac{1}{3}$. It is not hard to see that

$$
\cos \left[\arcsin \left(\frac{1}{3}\right)\right]=\sqrt{1-\left(\frac{1}{3}\right)^{2}}=\frac{\sqrt{8}}{3}
$$

We conclude that

$$
\cos \left[2 \arcsin \left(\frac{1}{3}\right)\right]=\frac{8}{9}-\frac{1}{9}=\frac{7}{9}
$$

9. Find the solution of the differential equation $\frac{d y}{d x}-\frac{y}{x}=3 x^{3}$ which satisfies $y(1)=0$. Check your answer.
This is a first order linear differential equation. It is of the form $\frac{d y}{d x}+P(x) y=Q(x)$. Multiply both sides by

$$
\mu(x)=e^{\int P(x) d x}=e^{\int \frac{-1}{x} d x}=e^{-\ln x}=\frac{1}{x}
$$

to get

$$
\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=3 x^{2}
$$

Integrate both sides, with respect to x, to get $\frac{y}{x}=x^{3}+C$. Plug in the initial condition to get $C=-1$. The solution is $y=x^{4}-x$. Check. Notice that when $x=1$, we have $y=0$. Notice also that

$$
\frac{d y}{d x}-\frac{y}{x}=4 x^{3}-1-\left(x^{3}-1\right)=3 x^{3} \checkmark
$$

10. Let $f(x)=x \ln x$. What is the domain of $f(x)$? Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of $y=f(x)$. Graph $y=f(x)$.
The domain of $f(x)$ is all positive x. The limit as x goes to zero from above of $f(x)$ is zero. One needs l'Hopital's rule to see this because x and $\ln x$ are fighting one another since x wants the answer to be zero and $\ln x$ wants the answer to be $-\infty$. The x wins. If you don't know l'Hopital's rule yet, don't worry I won't hold it against you. $f^{\prime}(x)=1+\ln x$. So $f^{\prime}(x)$ is positive for $1 / e<x$ and $f^{\prime}(x)$ is negative for $0<x<1 / e$. So,
$f(x)$ is increasing for $1 / e<x$ and $f(x)$ is decreasing for $0<x<1 / e$.
The point $(1 / e,-1 / e)$ is a local minimum for $y=f(x)$.

We see that $f^{\prime \prime}(x)=\frac{1}{x}$ which is always positve.
The graph is always concave up. The graph is never concave down.
There are no points of inflection.

The graph appears on a separate page.

