
Fall 2001, Exam 4, Math 142, The solution to problems 3, 4, 9, 10.
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The limit as m goes to 1 of the mth partial sum is lim
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by the absolute convergence test.
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We know that
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Replace x by �x to see that
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for some constant C . Plug in x = 0 to see that 0 = ln 1 = C . Notice that if
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This is an alternating series. The absolute value of the terms decreases

and has limit zero. The alternating series test applies. The series

converges and the �rst term which is less than 1
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