142 Exam Fall 2001
PRINT Your Name:
There are 10 problems on 5 pages. Each problems is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! If you want to pick up your exam before Monday, write a short note to that effect on the top of this page and I will leave your exam outside my office door, before I go home tonight.

1. Does $\sum_{n=1}^{\infty} \frac{4}{n}$ converge? Justify your answer

This series is 4 times the harohohic series. This series diverges.
2. Does $\sum_{n=1}^{\infty} \frac{n+3}{n^{2} \sqrt{n}}$ converge? Justify your answer.

Do a limit conraison to $\sum_{n=0}^{\infty} \frac{1}{h^{\frac{3}{2}}}$, which concerges because it is Q γ-serin, with $\gamma=\frac{3}{2}$ and $\frac{3}{2}>1$,

$$
\lim _{n \rightarrow 0} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n+3}{n^{2} \sqrt{n}} n^{3}=\lim _{n \rightarrow \infty} \frac{n+3}{n}=\lim _{n \rightarrow \infty} 1+\frac{3}{n}=1, \quad 1 \text { is anam bar, }
$$

$$
a_{n}=\frac{n+3}{n^{2} \sqrt{n}}, b_{n}=\frac{1}{n^{3}}
$$

l is hot O a ∞, so both seizes concerts, or botispics divide. We Know that $\sum_{h=1}^{n^{3}=}$ concise, so $\sum_{h=0}^{\infty} \frac{n+3}{n^{2} \sqrt{n}}$ also converses

