9 Find $\left.\left.\int_{1}^{\infty} \frac{x}{e^{x}} d x=\lim _{b \rightarrow \infty}\left(-x e^{-x}+\int e^{-x} d x\right)\right]_{1}^{b}=\lim _{b \rightarrow 0}^{r}-x e^{-x}-e^{-x}\right]_{1}^{b}$

$$
\begin{array}{ll}
u=x & v=-e^{-x} \quad \underline{v} \frac{d}{d x}(P A)=+x e^{-x}-e^{-x}+c^{-x} \\
d y=d x \quad d v=e^{-x} d r
\end{array}
$$

$$
\lim _{b \rightarrow \infty} \frac{-b}{e^{b}}-\frac{1}{e^{b}}=\left(-\frac{1}{e}-\frac{1}{c}\right)-\operatorname{l}_{b \rightarrow \infty} \frac{-1}{c b}-0+\frac{2}{c}=\frac{2}{c}
$$

$$
t, 6 \rightarrow \infty
$$

10. Consider the series $\sum_{k=1}^{\infty} \ln \left(\frac{k}{k+1}\right)$. Find a closed formula for the partial sum $s_{n}=\sum_{k=1}^{n} \ln \left(\frac{k}{k+1}\right)$. (In other words, I want you to find a formula which is equal to s_{n}. Your formula is not allowed to contain any "dots" or any summation signs.) Does the original series converge or diverge? Find the limit of the series, if possible.

$$
\begin{aligned}
I_{n}= & \ln \left(\frac{1}{2}\right)+\ln \left(\frac{2}{3}\right)+\ln \left(\frac{3}{4}\right)+\cdots+\ln \left(\frac{n}{n+1}\right) \\
& \left(\frac{\ln }{0} 1-\ln 2\right)+(\ln) 2-\ln (3)+(\ln (3)-9)(x)+(1-k+(n)-\ln (n+\cdots))=-\ln (n+1)
\end{aligned}
$$

The original series diverges to

