11 A ball is dropped from a height of 100 feet. Each time it hits the floor, it rebounds to $\frac{2}{3}$ its previous height. Find the total distance the ball travels before coming to rest.

$$
\begin{aligned}
& 100 \sqrt{ } \uparrow \frac{2}{3}(100) \sqrt{\frac{2}{3}}(100) \uparrow\left(a_{3}\right]^{2} 100 \downarrow\left(\frac{2}{3}\right)^{2}(100) \\
& \text { distance }=\underset{\sim}{100}+\frac{2}{3}(200)+\left(\frac{2}{3}\right)^{2}(200)+\left(\frac{2}{3}\right)^{3}(200)+\cdots \\
& \text { Idonot } \\
& \text { fit isth } \\
& \text { pattern } \\
& \text { I an the geometric seines } \\
& \text { with } r=\frac{2}{3} \text { and initial term } \frac{2}{3}(100) \text {. } \\
& \text { sum is } \frac{\text { initialtam }}{1-2} \\
& =100+\frac{\frac{400}{3}}{1-\frac{2}{3}}=100+\frac{400}{3\left(\frac{1}{3}\right)}-500 \text { beet }
\end{aligned}
$$

