Exam 1, Fall 2001, Math 142 Solutions to problems 4 and 5.

4. Find the volume of the solid generated by revolving the region bounded by $y = e^x$, the x-axis, the y-axis, and x = 1 about the x-axis.

Spin the rectangle. Get a disc of volume $\pi r^2 t$, where t = dx, and r is equal to the y-coordinate, which is e^x . So the volume is

$$\pi \int_0^1 e^{2x} dx = \pi \frac{e^{2x}}{2} \Big|_0^1 = \boxed{\frac{\pi}{2}(e^2 - 1)}.$$

The picture is on a separate page.

5. Let $f(x) = x^2 + 2x$ for $x \le -1$. Find $f^{-1}(x)$. What is the domain of $f^{-1}(x)$? Verify that $f(f^{-1}(x)) = x$ for all x in the domain of $f^{-1}(x)$. Verify that $f^{-1}(f(x)) = x$ for all x in the domain of f(x). Graph y = f(x). Graph $y = f^{-1}(x)$. Let $y = f^{-1}(x)$. So f(y) = x and $y \le -1$. It follows that $y^2 + 2y = x$. I could use the quadratic formula. I will just complete the square.

$$(y+1)^2 = x+1$$

 $y+1 = \pm \sqrt{x+1}$
 $y = -1 \pm \sqrt{x+1}$

But $y \leq -1$; so, $y = -1 - \sqrt{x+1}$. We conclude that

$$f^{-1}(x) = -1 - \sqrt{x+1}$$
 for $-1 \le x$.

The picture appears on a separate page. We check our answer. Take $-1 \le x$. We see that

$$f(f^{-1}(x)) = f(-1 - \sqrt{x+1}) = (-1 - \sqrt{x+1})^2 + 2(-1 - \sqrt{x+1})$$
$$= 1 + 2\sqrt{x+1} + (\sqrt{x+1})^2 - 2 - 2\sqrt{x+1} = (x+1) - 1 = x.\checkmark$$

Take $x \leq -1$.

$$f^{-1}(f(x)) = f^{-1}(x^2 + 2x) = -1 - \sqrt{x^2 + 2x + 1} = -1 - \sqrt{(x+1)^2} = -1 - |x+1|.$$

We know that $x \leq -1$; so, $x + 1 \leq 0$. Thus |x + 1| = -(x + 1), and

$$-1 - |x + 1| = -1 - (-(x + 1)) = -1 + x + 1 = x.\checkmark$$

The picture appears on a separate page.