Exam 1, Fall 2001, Math 142 Solutions to problems 4 and 5.

4. Find the volume of the solid generated by revolving the region bounded by $y=e^{x}$, the x-axis, the y-axis, and $x=1$ about the x-axis.
Spin the rectangle. Get a disc of volume $\pi r^{2} t$, where $t=d x$, and r is equal to the y-coordinate, which is e^{x}. So the volume is

$$
\pi \int_{0}^{1} e^{2 x} d x=\left.\pi \frac{e^{2 x}}{2}\right|_{0} ^{1}=\frac{\pi}{2}\left(e^{2}-1\right)
$$

The picture is on a separate page.
5. Let $f(x)=x^{2}+2 x$ for $x \leq-1$. Find $f^{-1}(x)$. What is the domain of $f^{-1}(x)$? Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of $f^{-1}(x)$. Verify that $f^{-1}(f(x))=x$ for all x in the domain of $f(x)$. Graph $y=f(x)$. Graph $y=f^{-1}(x)$.
Let $y=f^{-1}(x)$. So $f(y)=x$ and $y \leq-1$. It follows that $y^{2}+2 y=x$. I could use the quadratic formula. I will just complete the square.

$$
\begin{aligned}
& (y+1)^{2}=x+1 \\
& y+1= \pm \sqrt{x+1} \\
& y=-1 \pm \sqrt{x+1}
\end{aligned}
$$

But $y \leq-1$; so, $y=-1-\sqrt{x+1}$. We conclude that

$$
f^{-1}(x)=-1-\sqrt{x+1} \quad \text { for }-1 \leq x
$$

The picture appears on a separate page. We check our answer. Take $-1 \leq x$. We see that

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=f(-1-\sqrt{x+1})=(-1-\sqrt{x+1})^{2}+2(-1-\sqrt{x+1}) \\
& =1+2 \sqrt{x+1}+(\sqrt{x+1})^{2}-2-2 \sqrt{x+1}=(x+1)-1=x . \checkmark
\end{aligned}
$$

Take $x \leq-1$.
$f^{-1}(f(x))=f^{-1}\left(x^{2}+2 x\right)=-1-\sqrt{x^{2}+2 x+1}=-1-\sqrt{(x+1)^{2}}=-1-|x+1|$.
We know that $x \leq-1$; so, $x+1 \leq 0$. Thus $|x+1|=-(x+1)$, and

$$
-1-|x+1|=-1-(-(x+1))=-1+x+1=x . \checkmark
$$

The picture appears on a separate page.

