Final Exam, Math 142, Fall 2000, problems 7, 8, 9, 10, 11, and 12
7. Find $\int \frac{-x^{2}+5 x-2}{(x-1)\left(x^{2}+1\right)} d x$.

Set

$$
\frac{-x^{2}+5 x-2}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}
$$

Multiply both sides by $(x-1)\left(x^{2}+1\right)$ to get

$$
-x^{2}+5 x-2=A\left(x^{2}+1\right)+(B x+C)(x-1)
$$

hence,

$$
-x^{2}+5 x-2=(A+B) x^{2}+(-B+C) x+(A-C)
$$

Equate the corresponding coefficients:

$$
\begin{aligned}
-1 & =A+B \\
5 & =-B+C, \text { and } \\
-2 & =A-C
\end{aligned}
$$

Replace Equation 3 by Equation 3 minus Equation 1:

$$
\begin{aligned}
-1 & =A+B \\
5 & =-B+C, \text { and } \\
-1 & =-B-C
\end{aligned}
$$

Replace Equation 3 by Equation 3 plus Equation 2:

$$
\begin{aligned}
-1 & =A+B \\
5 & =-B+C, \text { and } \\
4 & =-2 B .
\end{aligned}
$$

So, $B=-2, C=3$, and $A=1$. Thus,

$$
\begin{aligned}
& \int \frac{-x^{2}+5 x-2}{(x-1)\left(x^{2}+1\right)} d x=\int \frac{1}{x-1}+\frac{-2 x+3}{x^{2}+1} d x \\
& =\ln |x-1|-\ln \left(x^{2}+1\right)+3 \arctan x+C
\end{aligned}
$$

Of course, the derivative of the proposed answer is

$$
\frac{1}{x-1}-\frac{2 x}{x^{2}+1}+\frac{3}{1+x^{2}}=\frac{\left(x^{2}+1\right)-2 x(x-1)+3(x-1)}{(x-1)\left(x^{2}+1\right)}=\frac{-x^{2}+5 x-2}{(x-1)\left(x^{2}+1\right)} \cdot \checkmark
$$

8. Find $\int_{0}^{\infty} \frac{x}{\left(x^{2}+2\right)^{2}} d x$.

We have

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x}{\left(x^{2}+2\right)^{2}} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{x}{\left(x^{2}+2\right)^{2}} d x=\left.\lim _{b \rightarrow \infty} \frac{-1}{2\left(x^{2}+2\right)}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{-1}{2\left(b^{2}+2\right)}+\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

9. Find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.

The top and the bottom both go to 0 . We use L'Hopital's rule to see that

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x} .
$$

L'Hopital's rule applies once again. We get

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2}
$$

10. Find $\lim _{x \rightarrow \pi} \frac{1-\cos x}{x^{2}}$.

It is clear that

$$
\lim _{x \rightarrow \pi} \frac{1-\cos x}{x^{2}}=\frac{2}{\pi^{2}}
$$

11. Let $f(x)=x^{3} e^{\sin \left(x^{2}\right)}$. Find $f^{\prime}(x)$.

We see that

$$
f^{\prime}(x)=x^{3}(2 x) \cos \left(x^{2}\right) e^{\sin \left(x^{2}\right)}+3 x^{2} e^{\sin \left(x^{2}\right)}
$$

12. Let $f(x)=\frac{17}{\arcsin x}$. Find $f^{\prime}(x)$.

We see that

$$
f^{\prime}(x)=\frac{-17}{(\arcsin x)^{2}} \frac{1}{\sqrt{1-x^{2}}}
$$

