Math 142, Fall 2000, Exam 4, Problems 9, 10, and 11

9. Consider the series $\sum_{k=4}^{\infty} \frac{1}{k}-\frac{1}{k+1}$. Give a closed formula for the partial sum $s_{n}=\sum_{k=4}^{n} \frac{1}{k}-\frac{1}{k+1}$. Does the series converge? If so, what is the sum of the series? We see that

$$
\begin{aligned}
& s_{n}=\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\left(\frac{1}{4}-\frac{1}{n+1}\right) .
\end{aligned}
$$

We also see that $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{4}-\frac{1}{n+1}\right)=\frac{1}{4}$. Thus,

The series converges to $\frac{1}{4}$.

10. Find $\int_{0}^{\infty} \frac{d x}{1+x^{2}}$.

We have

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{1+x^{2}}=\left.\lim _{b \rightarrow \infty} \tan ^{-1} x\right|_{0} ^{b}=\lim _{b \rightarrow \infty} \tan ^{-1} b-\tan ^{-1}(0) \\
& =\frac{\pi}{2}-0=\frac{\pi}{2}
\end{aligned}
$$

11. Find $\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}}$.

Use L'hopitals' rule four times to get that the limit is $\frac{1}{24}$; OR use

$$
\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

Thus,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right)-1+\frac{x^{2}}{2}}{x^{4}} \\
& =\lim _{x \rightarrow 0} \frac{+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots}{x^{4}}=\lim _{x \rightarrow 0}+\frac{1}{4!}-\frac{x^{2}}{6!}+\cdots=\frac{1}{4!} .
\end{aligned}
$$

