7. A ball is dropped from the height of 10 feet. Each time it hits the floor it rebounds to $\frac{2}{3}$ its previous height. Find the total distance it travels.

$$
\begin{aligned}
& \infty \downarrow\left\{1\left(\frac{2}{3}\right) \downarrow 10\left(\frac{2}{3}\right) \text { 个 } \cos \left(\frac{2}{3}\right)^{2} \downarrow 10\left(\frac{2}{2}\right)^{2}\right. \\
& \text { past }=10+10\left(\frac{2}{3}\right)+10\left(\frac{2}{3}\right)+10\left(\frac{2}{3}\right)^{2}+10\left(\frac{2}{3}\right)^{2}+ \\
& =10+20\left(\frac{2}{3}\right)\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots\right)
\end{aligned}
$$

This is a geometric seliosuits ratio $r=\frac{2}{3}$

$$
\text { Dist }=10+\frac{20\left(\frac{2}{3}\right)}{1-\frac{2}{3}}=50 \mathrm{ft}
$$

8 Consider the series $\sum_{k=4}^{\infty} \frac{1}{3^{k}}$. Give a closed formula for the partial sum $\sum_{k=4}^{n} \frac{1}{3^{k}}$ Does the series converge? If so, what is the sum of the series?

$$
\begin{aligned}
& L_{n}=\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\cdots+\frac{1}{3^{n}} \\
& \frac{1}{3} A_{n}=\frac{1}{35}+\frac{1}{36}+\frac{1}{3}+\frac{1}{3} n+1 \\
& \frac{2}{3} 1_{n}=\frac{1}{3^{4}}-\frac{1}{3^{n+1}} \\
& x_{n}=\frac{3}{2}\left(\frac{1}{3^{4}}-\frac{1}{3^{n+1}}\right) \\
& \text { Or } S_{n}=\frac{1}{2^{4}}+\frac{1}{3^{*}}: \frac{1}{3}+\cdots+\frac{1}{3^{4}} \frac{1}{3^{n-4}} \\
& \left.\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}^{2}\left(\frac{1}{3^{6}}-\frac{1}{3^{n+1}}\right)=\frac{1}{54}\right) \\
& \text { Yes the series converges to } \frac{1}{54} \text {. }
\end{aligned}
$$

